Pediatric Surgery International

, Volume 29, Issue 1, pp 87–95 | Cite as

Detergent enzymatic treatment for the development of a natural acellular matrix for oesophageal regeneration

  • Giorgia Totonelli
  • Panagiotis Maghsoudlou
  • Fanourious Georgiades
  • Massimo Garriboli
  • Kiron Koshy
  • Mark Turmaine
  • Michael Ashworth
  • Neil J. Sebire
  • Agostino Pierro
  • Simon Eaton
  • Paolo De Coppi
Original Article



Tissue engineering of the oesophagus has been proposed as a therapeutic alternative to organ transplantation. We previously demonstrated that a detergent enzymatic treatment (DET) is a valid method to obtain an acellular matrix with preservation of the native architecture. In this study, we aimed to develop a natural acellular matrix from pig oesophagus, as a valid framework for oesophageal replacement.


Pig oesophagi (n = 4) were decellularized with continuous luminal infusion of DET. To evaluate the efficiency of the decellularization, samples were assessed by histology and DNA quantification. Moreover, the ultra-structural characteristics of the acellular matrix were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM).


Decellularization of the oesophagus was achieved after three cycles of DET. Histological analysis showed the maintenance of tissue matrix architecture with absence of cellular elements, verified by measurement of DNA. SEM and TEM analysis confirmed preservation of the ultra-structural characteristics of the native tissue.


Oesophageal acellular matrix can be successfully obtained by decellularization of pig oesophagus using a gentle DET via the oesophageal lumen. This decellularization method preserves the ultrastructure of the native tissue and could represent the basis for a tissue-engineered oesophagus.


Oesophageal atresia Oesophagus Regenerative medicine Natural acellular matrix Decellularization Regeneration 



We thank Michael Boyd of the Royal Veterinary College’s Biological Unit for providing the animal tissue. This investigation was supported by Great Ormond Street Hospital charity, the Fondation Eugenio Litta (Geneva, Switzerland), the Medical Research Council, the Royal College of Surgeons of England, the Sparks Children’s Medical Charity, the British Foreign Office for the UK/USA Stem Cell Collaboration Award and the Mittal Research Fund. We would also like to thank the Royal Society/Wolfson Foundation for the tissue engineering laboratory refurbishment grant obtained for the Pediatric Surgery Department in the Institute of Child Health.


  1. 1.
    Spitz L, Kiely E, Pierro A (2004) Gastric transposition in children—a 21-year experience. J Pediat Surg 39:276–281. doi:10.1016/j.jpedsurg.2003.11.032 (discussion 276–281)PubMedCrossRefGoogle Scholar
  2. 2.
    Allum WH, Blazeby JM, Griffin SM, Cunningham D, Jankowski JA, Wong R (2011) Association of upper gastrointestinal surgeons of great Britain and Ireland, the British Society of Gastroenterology and the British Association of Surgical Oncology. Guidelines for the management of oesophageal and gastric cancer. Gut 60:1449–1472. doi:10.1136/gut.2010.228254 PubMedCrossRefGoogle Scholar
  3. 3.
    Ludman L, Spitz L (2003) Quality of life after gastric transposition for oesophageal atresia. J Pediatr Surg 38:53–57. doi:10.1053/jpsu.2003.50009 (discussion 53–57)PubMedCrossRefGoogle Scholar
  4. 4.
    Ure BM, Slany E, Eypasch EP, Gharib M, Holschneider AM, Troidl H (1995) Long-term functional results and quality of life after colon interposition for long-gap oesophageal atresia. Eur J Pediatr Surg 5:206–210. doi:10.1055/s-2008-1066206 PubMedCrossRefGoogle Scholar
  5. 5.
    Orlando G, Wood KJ, Stratta RJ et al (2011) Regenerative medicine and organ transplantation: past, present, and future. Transplantation 91:1310–1317. doi:10.1097/TP.0b013e318219ebb5 PubMedCrossRefGoogle Scholar
  6. 6.
    Zani A, Pierro A, Elvassore N, De Coppi P (2009) Tissue engineering: an option for esophageal replacement? Semin Pediatr Surg 18:57–62. doi:10.1053/j.sempedsurg.2008.10.011 PubMedCrossRefGoogle Scholar
  7. 7.
    Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246. doi:10.1016/S0140-6736(06)68438-9 PubMedCrossRefGoogle Scholar
  8. 8.
    Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, Atala A (2011) Tissue engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 377:1175–1182. doi:10.1016/S0140-6736(10)62354-9 PubMedCrossRefGoogle Scholar
  9. 9.
    Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA et al (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372:2023–2030. doi:10.1016/S0140-6736(08)61598-6 PubMedCrossRefGoogle Scholar
  10. 10.
    Laurance J (2010) British boy receives trachea transplant built with his own stem cells. BMJ 340:c1633. doi:10.1136/bmj.c1633 PubMedCrossRefGoogle Scholar
  11. 11.
    Fishman JM, De Coppi P, Elliott MJ, Atala A, Birchall MA, Macchiarini P (2011) Airway tissue engineering. Expert Opin Biol Ther 11(12):1623–1635. doi:10.1517/14712598.2011.623696 PubMedCrossRefGoogle Scholar
  12. 12.
    Baiguera S, Jungebluth P, Burns A, Mavilia C, Haag J, De Coppi P, Macchiarini P (2010) Tissue engineered human tracheas for in vivo implantation. Biomaterials 31(34):8931–8938. doi:10.1016/j.biomaterials.2010.08.005 PubMedCrossRefGoogle Scholar
  13. 13.
    Elliott MJ, De Coppi P, Speggiorin S, Roebuck D, Butler CR, Samuel E, Crowley C, McLaren C, Fierens A, Vondrys D, Cochrane L, Jephson C, Janes S, Beaumont NJ, Cogan T, Bader A, Seifalian AM, Hsuan JJ, Lowdell MW, Birchall MA (2012) Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet. doi:10.1016/S0140-6736(08)61345-8 (Epub ahead of print)Google Scholar
  14. 14.
    Orlando G, García-Arrarás JE, Soker T, Booth C, Wang Z, Ross CL, Farney AC, Rogers J, De Coppi P, Stratta RJ (2012) Regeneration and bioengineering of the gastrointestinal tract: current status and future perspectives. Dig Liver Dis 44(9):714–720. doi:10.1016/j.dld.2012.04.005 PubMedCrossRefGoogle Scholar
  15. 15.
    Orlando G, Bendala JD, Shupe T, Bergman C, Bitar KN, Booth C, Carbone M, Koch K, Lerut JP, Neuberger J, Petersen BE, Ricordi C, Atala A, Stratta RJ, Soker S (2012) Cell and organ bioengineering technology as applied to gastrointestinal diseases. Gut. doi:10.1136/gutjnl-2011-301111 PubMedGoogle Scholar
  16. 16.
    Takimoto Y, Nakamura T, Teramachi M, Kiyotani T, Shimizu Y (1995) Replacement of long segments of the esophagus with a collagen-silicone composite tube. ASAIO J 41:M605–M608. doi:10.1097/00002480-199507000-00082 PubMedCrossRefGoogle Scholar
  17. 17.
    Takimoto Y, Nakamura T, Yamamoto Y, Kiyotani T, Teramachi M, Shimizu Y (1998) The experimental replacement of a cervical esophageal segment with an artificial prosthesis with the use of collagen matrix and a silicone stent. J Thorac Cardiovasc Surg 116:98–106. doi:10.1016/S0022-5223(98)70247-8 PubMedCrossRefGoogle Scholar
  18. 18.
    Yamamoto Y, Nakamura T, Shimizu Y, Matsumoto K, Takimoto Y, Kiyotani T, Sekine T, Ueda H, Liu Y, Tamura N (1999) Intrathoracic esophageal replacement in the dog with the use of an artificial esophagus composed of a collagen sponge with a double-layered silicone tube. J Thorac Cardiovasc Surg 118:276–286. doi:10.1016/S0022-5223(99)70218-7 PubMedCrossRefGoogle Scholar
  19. 19.
    Badylak S, Meurling S, Chen M, Spievack A, Simmons-Byrd A (2000) Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg 35:1097–1103. doi:10.1053/jpsu.2000.7834 PubMedCrossRefGoogle Scholar
  20. 20.
    Badylak SF, Hoppo T, Nieponice A, Gilbert TW, Davison JM, Jobe BA (2011) Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold. Tissue Eng Part A 17:1643–1650. doi:10.1089/ten.tea.2010.0739 PubMedCrossRefGoogle Scholar
  21. 21.
    Clough A, Ball J, Smith GS, Leibman S (2011) Porcine small intestine submucosa matrix (Surgisis) for esophageal perforation. Ann Thorac Surg 91:e15–e16. doi:10.1016/j.athoracsur.2010.10.011 PubMedCrossRefGoogle Scholar
  22. 22.
    Lopes MF, Cabrita A, Ilharco J, Pessa P, Paiva-Carvalho J, Pires A, Patrício J (2006) Esophageal replacement in rat using porcine intestinal submucosa as a patch or a tube-shaped graft. Dis Esophagus 19:254–259. doi:10.1111/j.1442-2050.2006.00574.x PubMedCrossRefGoogle Scholar
  23. 23.
    Doede T, Bondartschuk M, Joerck C, Schulze E, Goernig M (2009) Unsuccessful alloplastic esophageal replacement with porcine small intestinal submucosa. Artif Organs 33:328–333. doi:10.1111/j.1525-1594.2009.00727.x PubMedCrossRefGoogle Scholar
  24. 24.
    Lopes MF, Cabrita A, Ilharco J, Pessa P, Patrício J (2006) Grafts of porcine intestinal submucosa for repair of cervical and abdominal esophageal defects in the rat. J Invest Surg 19:105–111. doi:10.1080/08941930600569621 PubMedCrossRefGoogle Scholar
  25. 25.
    Badylak SF, Vorp DA, Spievack AR, Simmons-Byrd A, Hanke J, Freytes DO, Thapa A, Gilbert TW, Nieponice A (2005) Esophageal reconstruction with ECM and muscle tissue in a dog model. J Surg Res 128:87–97. doi:10.1016/j.jss.2005.03.002 PubMedCrossRefGoogle Scholar
  26. 26.
    Ott HC, Matthiesen TS, Goh SK et al (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221. doi:10.1038/nm1684 PubMedCrossRefGoogle Scholar
  27. 27.
    Uygun BE, Soto-Gutierrez A, Yagi H et al (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16:814–820. doi:10.1038/nm.2170 PubMedCrossRefGoogle Scholar
  28. 28.
    Baptista PM, Siddiqui MM, Lozier G et al (2011) The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53:604–617. doi:10.1002/hep.24067 PubMedCrossRefGoogle Scholar
  29. 29.
    Ott HC, Clippinger B, Conrad C et al (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16:927–933. doi:10.1126/science.1189345 PubMedCrossRefGoogle Scholar
  30. 30.
    Totonelli G, Maghsoudlou P, Garriboli M, Riegler J, Orlando G, Burns AJ, Sebire NJ, Smith VV, Fishman JM, Ghionzoli M, Turmaine M, Birchall MA, Atala A, Soker S, Lythgoe MF, Seifalian A, Pierro A, Eaton S, De Coppi P (2012) A rat decellularized small bowel 15 scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials 33(12):3401–3410. doi:10.1016/j.biomaterials.2012.01.012 PubMedCrossRefGoogle Scholar
  31. 31.
    Saxena AK, Ainoedhofer H, Hollwarth ME (2009) Esophagus tissue engineering: in vitro generation of esophageal epithelial cell sheets and viability on scaffold. J Pediatr Surg 44:896–901. doi:10.1016/j.jpedsurg.2009.01.019 PubMedCrossRefGoogle Scholar
  32. 32.
    Saxena AK, Ainoedhofer H, Hollwarth ME (2010) Culture of ovine esophageal epithelial cells and in vitro esophagus tissue engineering. Tissue Eng Part C Methods 16:109–114. doi:10.1089/ten.tec.2009.0145 PubMedCrossRefGoogle Scholar
  33. 33.
    Conconi MT, De Coppi P, Di Liddo R, Vigolo S, Zanon GF, Parnigotto PP et al (2005) Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl Int 18:727–734. doi:10.1111/j.1432-2277.2005.00082.x PubMedCrossRefGoogle Scholar
  34. 34.
    Marzaro M, Vigolo S, Oselladore B, Conconi MT, Ribatti D, Giuliani S, Nico B, Perrino G, Nussdorfer GG, Parnigotto PP (2006) In vitro and in vivo proposal of an artificial esophagus. J Biomed Mater Res A 77(4):795–801. doi:10.1002/jbm.a.30666 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Giorgia Totonelli
    • 1
  • Panagiotis Maghsoudlou
    • 1
  • Fanourious Georgiades
    • 1
  • Massimo Garriboli
    • 1
  • Kiron Koshy
    • 1
  • Mark Turmaine
    • 2
  • Michael Ashworth
    • 3
  • Neil J. Sebire
    • 3
  • Agostino Pierro
    • 1
  • Simon Eaton
    • 1
  • Paolo De Coppi
    • 1
  1. 1.Surgery Unit, Institute of Child Health and Great Ormond Street HospitalUniversity College LondonLondonUK
  2. 2.Division of BioscienceUniversity College LondonLondonUK
  3. 3.Department of Histopathology, Institute of Child Health and Great Ormond Street HospitalUniversity College LondonLondonUK

Personalised recommendations