Pediatric Surgery International

, Volume 26, Issue 1, pp 79–84

Amniotic fluid stem cell migration after intraperitoneal injection in pup rats: implication for therapy

  • Marco Ghionzoli
  • Mara Cananzi
  • Augusto Zani
  • Carlo Alberto Rossi
  • Francesco Fascetti Leon
  • Agostino Pierro
  • Simon Eaton
  • Paolo De Coppi
Original Article

Abstract

Purpose

Despite being commonly used in clinical practice, the intraperitoneal (i.p.) route has been rarely used for cell delivery. We evaluated the capacity of amniotic fluid stem (AFS) cells, administered i.p., to diffuse systemically and to integrate into tissues of healthy newborn rats.

Methods

AFS cells were obtained from pregnant GFP + Sprague–Dawley rats by c-kit selection. Wild-type Sprague–Dawley newborn rats were divided into two groups receiving i.p.: (1) 2 × 106 AFS cells (n = 12); (2) of phosphate buffer saline (PBS) (n = 2) at 24 and 48 h after birth. Animals were either killed at 96 h of life, and organs collected for gfp amplification, or at 3 weeks of life and tissues isolated for green fluorescence protein (GFP) immunofluorescence.

Results

No adverse effects were observed after i.p. injection of PBS or AFS cells. Gfp was amplified in at least one organ in all rats injected with AFS cells except one (11/12). The intestine was the organ found most frequently positive (67%) followed by liver (25%), spleen (16%), heart (16%), lungs (16%), femur (8%) and brain (0%). Immunohistochemistry confirmed PCR results.

Conclusion

In the short term, the i.p. administration of AFS cells, is a safe procedure and allows their migration, homing and integration into various organs of healthy newborn rats.

Keywords

Pup rat Amniotic fluid stem cell Intraperitoneal injection Cell therapy 

References

  1. 1.
    Daar AS, Greenwood HL (2007) A proposed definition of regenerative medicine. J Tissue Eng Regen Med 1(3):179–184CrossRefPubMedGoogle Scholar
  2. 2.
    Hipp J, Atala A (2008) Sources of stem cells for regenerative medicine. Stem Cell Rev 4(1):3–11CrossRefPubMedGoogle Scholar
  3. 3.
    Mimeault M, Batra SK (2008) Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. Stem Cell Rev 4(1):27–49 (review)CrossRefPubMedGoogle Scholar
  4. 4.
    Strauer BE, Kornowski R (2003) Stem cell therapy in perspective. Circulation 107(7):929–934CrossRefPubMedGoogle Scholar
  5. 5.
    Saif MW, Siddiqui IA, Sohail MA (2009) Management of ascites due to gastrointestinal malignancy. Ann Saudi Med 29(5):369–377CrossRefPubMedGoogle Scholar
  6. 6.
    Markman M (2009) An update on the use of intraperitoneal chemotherapy in the management of ovarian cancer. Cancer J 15(2):105–109PubMedGoogle Scholar
  7. 7.
    Cotte E, Passot G, Mohamed F, Vaudoyer D, Gilly FN, Glehen O (2009) Management of peritoneal carcinomatosis from colorectal cancer: current state of practice. Cancer J 15(3):243–248PubMedCrossRefGoogle Scholar
  8. 8.
    Chua TC, Yan TD, Saxena A, Morris DL (2009) Should the treatment of peritoneal carcinomatosis by cytoreductive surgery and hyperthermic intraperitoneal chemotherapy still be regarded as a highly morbid procedure: a systematic review of morbidity and mortality. Ann Surg 249(6):900–907CrossRefPubMedGoogle Scholar
  9. 9.
    Kumagai K, Saikawa Y, Fukuda K, Ito R, Igarashi T, Tsuwano S, Nakamura R, Takahashi T, Takeuchi H, Kitagawa Y (2009) Octreotide acetate successfully treated a bowel obstruction caused by peritoneally disseminated gastric cancer, there by enabling the subsequent use of oral S-1 chemotherapy. Int J Clin Oncol 14(4):372–375CrossRefPubMedGoogle Scholar
  10. 10.
    Kuramoto M, Shimada S, Ikeshima S, Matsuo A, Yagi Y, Matsuda M, Yonemura Y, Baba H (2009) Extensive intraoperative peritoneal lavage as a standard prophylactic strategy for peritoneal recurrence in patients with gastric carcinoma. Ann Surg 250(2):242–246CrossRefPubMedGoogle Scholar
  11. 11.
    Chua TC, Yan TD, Zhao J, Morris DL (2009) Peritoneal carcinomatosis and liver metastases from colorectal cancer treated with cytoreductive surgery perioperative intraperitoneal chemotherapy and liver resection. Eur J Surg Oncol 2009 July 23Google Scholar
  12. 12.
    Esquivel J (2009) Technology of hyperthermic intraperitoneal chemotherapy in the United States, Europe, China, Japan, and Korea. Cancer J 15(3):249–254PubMedGoogle Scholar
  13. 13.
    Shaaban AF, Kim HB, Milner R, Flake AW (1999) A kinetic model for the homing and migration of prenatally transplanted marrow. Blood 94(9):3251–3257PubMedGoogle Scholar
  14. 14.
    Flake AW, Harrison MR, Adzick NS, Zanjani ED (1986) Transplantation of fetal hematopoietic stem cells in utero: the creation of hematopoietic chimeras. Science 233(4765):776–778CrossRefPubMedGoogle Scholar
  15. 15.
    Di Campli C, Piscaglia AC, Pierelli L, Rutella S, Bonanno G, Alison MR, Mariotti A, Vecchio FM, Nestola M, Monego G, Michetti F, Mancuso S, Pola P, Leone G, Gasbarrini G, Gasbarrini A (2004) A human umbilical cord stem cell rescue therapy in a murine model of toxic liver injury. Dig Liver Dis 36(9):603–613CrossRefPubMedGoogle Scholar
  16. 16.
    Piscaglia AC, Di Campli C, Zocco MA, Di Gioacchino G, Novi M, Rutella S, Bonanno G, Monego G, Vecchio FM, Michetti F, Mancuso S, Leone G, Gasbarrini G, Pola P, Gasbarrini A (2005) Human cordonal stem cell intraperitoneal injection can represent a rescue therapy after an acute hepatic damage in immunocompetent rats. Transplant Proc 37(6):2711–2714CrossRefPubMedGoogle Scholar
  17. 17.
    De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106CrossRefPubMedGoogle Scholar
  18. 18.
    Bajada S, Mazakova I, Richardson JB, Ashammakhi N (2008) Updates on stem cells and their applications in regenerative medicine. J Tissue Eng Regen Med 2(4):169–183 (review)CrossRefPubMedGoogle Scholar
  19. 19.
    Siegel N, Rosner M, Hanneder M, Valli A, Hengstschläger M (2007) Stem cells in amniotic fluid as new tools to study human genetic diseases. Stem Cell Rev 3(4):256–264 (review)CrossRefPubMedGoogle Scholar
  20. 20.
    Tsai MS, Hwang SM, Tsai YL, Cheng FC, Lee JL, Chang YJ (2006) Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol Reprod 74(3):545–551CrossRefPubMedGoogle Scholar
  21. 21.
    Kim J, Lee Y, Kim H, Hwang KJ, Kwon HC, Kim SK, Cho DJ, Kang SG, You J (2007) Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif 40(1):75–90CrossRefPubMedGoogle Scholar
  22. 22.
    Caughey AB, Hopkins LM, Norton ME (2006) Chorionic villus sampling compared with amniocentesis and the difference in the rate of pregnancy loss. Obstet Gynecol 108(3 Pt 1):612–616Google Scholar
  23. 23.
    Eddleman KA, Malone FD, Sullivan L, Dukes K, Berkowitz RL, Kharbutli Y, Porter TF, Luthy DA, Comstock CH, Saade GR, Klugman S, Dugoff L, Craigo SD, Timor-Tritsch IE, Carr SR, Wolfe HM, D’Alton ME (2006) Pregnancy loss rates after midtrimester amniocentesis. Obstet Gynecol 108(5):1067–1072PubMedGoogle Scholar
  24. 24.
    Cananzi M, Atala A, De Coppi P (2009) Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod Biomed Online 18(Suppl 1):17–27PubMedGoogle Scholar
  25. 25.
    Carraro G, Perin L, Sedrakyan S, Giuliani S, Tiozzo C, Lee J, Turcatel G, De Langhe SP, Driscoll B, Bellusci S, Minoo P, Atala A, De Filippo RE, Warburton D (2008) Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells 26(11):2902–2911CrossRefPubMedGoogle Scholar
  26. 26.
    Perin L, Giuliani S, Jin D, Sedrakyan S, Carraro G, Habibian R, Warburton D, Atala A, De Filippo RE (2007) Renal differentiation of amniotic fluid stem cells. Cell Prolif 40(6):936–948CrossRefPubMedGoogle Scholar
  27. 27.
    Ditadi A, de Coppi P, Picone O, Gautreau L, Smati R, Six E, Bonhomme D, Ezine S, Frydman R, Cavazzana-Calvo M, André-Schmutz I (2009) Human and murine amniotic fluid c-Kit + Lin-cells display hematopoietic activity. Blood 113(17):3953–3960CrossRefPubMedGoogle Scholar
  28. 28.
    Flessner MF (1991) Peritoneal transport physiology: insights from basic research. J Am Soc Nephrol 2(2):122–135PubMedGoogle Scholar
  29. 29.
    Parungo CP, Soybel DI, Colson YL, Kim SW, Ohnishi S, DeGrand AM, Laurence RG, Soltesz EG, Chen FY, Cohn LH, Bawendi MG, Frangioni JV (2007) Lymphatic drainage of the peritoneal space: a pattern dependent on bowel lymphatics. Ann Surg Oncol 14(2):286–298CrossRefPubMedGoogle Scholar
  30. 30.
    Yuan Z, Rodela H, Hay JB, Oreopoulos D, Johnston MG (1994) Lymph flow and lymphatic drainage of inflammatory cells from the peritoneal cavity in a casein-peritonitis model in sheep. Lymphology 27(3):114–128PubMedGoogle Scholar
  31. 31.
    Wang X, Montini E, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M (2002) Kinetics of liver repopulation after bone marrow transplantation. Am J Pathol 161(2):565–574PubMedGoogle Scholar
  32. 32.
    Hristov M, Weber C (2009) Progenitor cell trafficking in the vascular wall. J Thromb Haemost Suppl 1:31–34Google Scholar
  33. 33.
    Hristov M, Zernecke A, Liehn EA, Weber C (2007) Regulation of endothelial progenitor cell homing after arterial injury. Thromb Haemost 98:274PubMedGoogle Scholar
  34. 34.
    Hristov M, Zernecke A, Bidzhekov K, Liehn EA, Shagdarsuren E, Ludwig A, Weber C (2007) Importance of CXCR2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ Res 100:590–597CrossRefPubMedGoogle Scholar
  35. 35.
    Lundberg J, Le Blanc K, Söderman M, Andersson T, Holmin S (2009) Endovascular transplantation of stem cells to the injured rat CNS. Neuroradiology June 27Google Scholar
  36. 36.
    Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4(3):206–216CrossRefPubMedGoogle Scholar
  37. 37.
    Grisafi D, Piccoli M, Pozzobon M, Ditadi A, Zaramella P, Chiandetti L, Zanon GF, Atala A, Zacchello F, Scarpa M, De Coppi P, Tomanin R (2008) High transduction efficiency of human amniotic fluid stem cells mediated by adenovirus vectors. Stem Cells Dev 17(5):953–962CrossRefPubMedGoogle Scholar
  38. 38.
    Chiavegato A, Bollini S, Pozzobon M, Callegari A, Gasparotto L, Taiani J, Piccoli M, Lenzini E, Gerosa G, Vendramin I, Cozzi E, Angelini A, Iop L, Zanon GF, Atala A, De Coppi P, Sartore S (2007) Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. J Mol Cell Cardiol 42(4):746–759CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Marco Ghionzoli
    • 1
  • Mara Cananzi
    • 1
  • Augusto Zani
    • 1
  • Carlo Alberto Rossi
    • 1
  • Francesco Fascetti Leon
    • 1
  • Agostino Pierro
    • 1
  • Simon Eaton
    • 1
  • Paolo De Coppi
    • 1
  1. 1.Department of SurgeryInstitute of Child HealthLondonUK

Personalised recommendations