ES, iPS, MSC, and AFS cells. Stem cells exploitation for Pediatric Surgery: current research and perspective

  • Michela Pozzobon
  • Marco Ghionzoli
  • Paolo De Coppi
Review Article


Despite the advancements that have been made in treating infants with congenital malformations, these still represent a major cause of disease and death during the first years of life and childhood. Regeneration of natural tissue from living cells to restore damaged tissues and organs is the main purpose of regenerative medicine. This relatively new field has emerged by the combination of tissue engineering and stem cell transplantation as a possible strategy for the replacement of damaged organs or tissues. This review would like to offer an insight on the latest evolution of stem cells with a glance at their possible application for regenerative medicine, particularly in the Paediatric Surgery field.


Stem cells Regenerative medicine ES iPS MSC AFS cells Pediatric Surgery 


  1. 1.
    Placzek MR, Chung IM, Macedo HM, Ismail S, Mortera Blanco T, Lim M, Cha JM, Fauzi I, Kang Y, Yeo DC, Ma CY, Polak JM, Panoskaltsis N, Mantalaris A (2009) Stem cell bioprocessing: fundamentals and principles. J R Soc Interface 6(32):209–232CrossRefPubMedGoogle Scholar
  2. 2.
    Safinia L, Datan N, Höhse M, Mantalaris A, Bismarck A (2005) Towards a methodology for the effective surface modification of porous polymer scaffolds. Biomaterials 26(36):7537–7547CrossRefPubMedGoogle Scholar
  3. 3.
    Carraro A, Hsu WM, Kulig KM, Cheung WS, Miller ML, Weinberg EJ, Swart EF, Kaazempur-Mofrad M, Borenstein JT, Vacanti JP, Neville C (2008) In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed Microdevices 10(6):795–805CrossRefPubMedGoogle Scholar
  4. 4.
    Nagy RD, Tsai BM, Wang M et al (2005) Stem cell transplantation as a therapeutic approach to organ failure. J Surg Res 129(1):152–160CrossRefPubMedGoogle Scholar
  5. 5.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49CrossRefPubMedGoogle Scholar
  6. 6.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143CrossRefPubMedGoogle Scholar
  7. 7.
    McKinney-Freeman SL, Jackson KA, Camargo FD, Ferrari G, Mavilio F, Goodell MA (2002) Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci USA 99:1341–1346CrossRefPubMedGoogle Scholar
  8. 8.
    Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, Lenvik T, Johnson S, Hu WS, Verfaillie CM (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 109(10):1291–1302PubMedGoogle Scholar
  9. 9.
    LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601CrossRefPubMedGoogle Scholar
  10. 10.
    Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279(5356):1528–1530 (erratum in: Science 1998 Aug 14;281(5379):923)CrossRefPubMedGoogle Scholar
  11. 11.
    Shamblott MJ, Axelman J, Littlefield JW, Blumenthal PD, Huggins GR, Cui Y, Cheng L, Gearhart JD (2001) Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. PNAS 98(1):113–118CrossRefPubMedGoogle Scholar
  12. 12.
    Kofidis T, de Bruin JL, Hoyt G, Ho Y, Tanaka M, Yamane T, Lebl DR, Swijnenburg RJ, Chang CP, Quertermous T, Robbins RC (2005) Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. J Heart Lung Transplant 24(6):737–744CrossRefPubMedGoogle Scholar
  13. 13.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Sweier JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145CrossRefPubMedGoogle Scholar
  14. 14.
    Markel TA, Crisostomo PR, Lahm T, Novotny NM, Rescorla FJ, Tector J, Meldrum DR (2008) Stem cells as a potential future treatment of pediatric intestinal disorders. J Pediatr Surg 43(11):1953–1963CrossRefPubMedGoogle Scholar
  15. 15.
    De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106CrossRefPubMedGoogle Scholar
  16. 16.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMedGoogle Scholar
  17. 17.
    Odorico JS, Kaufman DS, Thomson JA (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19(3):193–204CrossRefPubMedGoogle Scholar
  18. 18.
    Amit M, Shariki C, Margulets V et al (2004) Feeder layer and serum-free culture of human embryonic stem cells. Biol Reprod 70(3):837–845CrossRefPubMedGoogle Scholar
  19. 19.
    Richards M, Fong CY, Chan WK et al (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 20(9):933–936CrossRefPubMedGoogle Scholar
  20. 20.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156CrossRefPubMedGoogle Scholar
  21. 21.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638CrossRefPubMedGoogle Scholar
  22. 22.
    Fong H, Hohenstein KA, Donovan PJ (2008) Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells 26(8):1931–1938 (Epub 2008 Apr 3)CrossRefPubMedGoogle Scholar
  23. 23.
    Lott JP, Savulescu J (2007) Towards a global human embryonic stem cell bank. Am J Bioeth 7(8):37–44CrossRefPubMedGoogle Scholar
  24. 24.
    Hipp J, Atala A (2008) Sources of stem cells for regenerative medicine. Stem Cell Rev 4(1):3–11 ReviewCrossRefPubMedGoogle Scholar
  25. 25.
    Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R (2006) Human embryonic stem cell lines derived from single blastomeres. Nature 444(7118):481–485 (epub 2006 Aug 23. Erratum in: Nature. 2006 Nov 23;444(7118):512. Nature. 2007 Mar 15;446(7133):342)CrossRefPubMedGoogle Scholar
  26. 26.
    Chung Y, Klimanskaya I, Becker S, Marh J, Lu SJ, Johnson J, Meisner L, Lanza R (2006) Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439(7073):216–219 (epub 2005 Oct 16)CrossRefPubMedGoogle Scholar
  27. 27.
    Deb KD, Sarda K (2008) Human embryonic stem cells: preclinical perspectives. J Transl Med 6:7CrossRefPubMedGoogle Scholar
  28. 28.
    Briggs R, King TJ (1952) The transplantation of living nuclei from blastula cells into enucleated frog’s eggs. Proc Natl Acad Sci USA 38:455–463CrossRefPubMedGoogle Scholar
  29. 29.
    Gurdon JB, Laskey RA (1970) The transplantation of nuclei from single cultured cells into enucleate frogs’eggs. J Embryol Exp Morphol 24(2):227–248PubMedGoogle Scholar
  30. 30.
    Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380(6569):64–66CrossRefPubMedGoogle Scholar
  31. 31.
    Franco D, Moreno N, Ruiz-Lozano P (2007) Non-resident stem cell populations in regenerative cardiac medicine. Cell Mol Life Sci 64(6):683–691CrossRefPubMedGoogle Scholar
  32. 32.
    Dalgetty DM, Medine CN, Iredale JP, Hay DC (2009) Progress and future challenges in stem cell-derived liver technologies. Am J Physiol Gastrointest Liver Physiol 297(2):G241–G248CrossRefPubMedGoogle Scholar
  33. 33.
    Anglani F, Forino M, Del Prete D, Tosetto E, Torregrossa R, D’Angelo A (2004) In search of adult renal stem cells. J Cell Mol Med 8(4):474–487CrossRefPubMedGoogle Scholar
  34. 34.
    Lerou PH, Yabuuchi A, Huo H, Takeuchi A, Shea J, Cimini T, Ince TA, Ginsburg E, Racowsky C, Daley GQ (2008) Human embryonic stem cell derivation from poor-quality embryos. Nat Biotechnol 26(2):212–214 (epub 2008 Jan 27)CrossRefPubMedGoogle Scholar
  35. 35.
    Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324 (epub 2007 Jun 6)CrossRefPubMedGoogle Scholar
  36. 36.
    Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1(1):55–70CrossRefPubMedGoogle Scholar
  37. 37.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920CrossRefPubMedGoogle Scholar
  38. 38.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872CrossRefPubMedGoogle Scholar
  39. 39.
    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317CrossRefPubMedGoogle Scholar
  40. 40.
    Meissner A, Wernig M, Jaenisch R (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25(10):1177–1181CrossRefPubMedGoogle Scholar
  41. 41.
    Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953CrossRefPubMedGoogle Scholar
  42. 42.
    Yu J, Thomson JA (2008) Pluripotent stem cell lines. Genes Dev 22(15):1987–1997 ReviewCrossRefPubMedGoogle Scholar
  43. 43.
    Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977CrossRefPubMedGoogle Scholar
  44. 44.
    Friedenstein AJ, Kulagina NN, Panasuk AF, Rudakowa SF (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2:83–92PubMedGoogle Scholar
  45. 45.
    Campagnoli C, Roberts IAG (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402CrossRefPubMedGoogle Scholar
  46. 46.
    In ‘t Anker PS, Scherjon SA (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102:1548–1549CrossRefPubMedGoogle Scholar
  47. 47.
    Tsai MS, Lee JL (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19:1450–1456CrossRefPubMedGoogle Scholar
  48. 48.
    Fan CG, Thang FW, Zhang Q (2005) Characterization and neural differentiation of fetal lung mesenchymal stem cells. Cell Transplant 14:311–321CrossRefPubMedGoogle Scholar
  49. 49.
    Waddington RJ, Youde SJ, Lee CP, Sloan AJ (2009) Isolation of distinct progenitor stem cell populations from dental pulp. Cells Tissues Organs 189(1–4):268–274 (epub 2008 Aug 14)CrossRefPubMedGoogle Scholar
  50. 50.
    Eyckmans J, Luyten FP (2006) Species specificity of ectopic bone formation using periosteum-derived mesenchymal progenitor cells. Tissue Eng 12(8):2203–2213CrossRefPubMedGoogle Scholar
  51. 51.
    Erices A, Conget P (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242CrossRefPubMedGoogle Scholar
  52. 52.
    Romanov YA, Svintsitskaya VA (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105–110CrossRefPubMedGoogle Scholar
  53. 53.
    Igura K, Takahashi K, Mitsuru A, Yamaguchi S (2004) Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 6:543–553CrossRefPubMedGoogle Scholar
  54. 54.
    Perin L, Sedrakyan S, Da Sacco S, De Filippo R (2008) Characterization of human amniotic fluid stem cells and their pluripotential capability. Methods Cell Biol 86:85–99CrossRefPubMedGoogle Scholar
  55. 55.
    Horwitz EM, Blanc KL (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7:393–395CrossRefPubMedGoogle Scholar
  56. 56.
    Kern S, Eichler H (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301CrossRefPubMedGoogle Scholar
  57. 57.
    Le Blanc K (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5(6):485–489CrossRefPubMedGoogle Scholar
  58. 58.
    Karlsson H, Samarasinghe S, Ball LM, Sundberg B, Lankester AC, Dazzi F, Uzunel M, Rao K, Veys P, Le Blanc K, Ringdén O, Amrolia PJ (2008) Mesenchymal stem cells exert differential effects on alloantigen and virus-specific T-cell responses. Blood 112(3):532–541 (epub 2008 Apr 28)CrossRefPubMedGoogle Scholar
  59. 59.
    Crisostomo PR, Markel TA, Wang Y, Meldrum DR (2008) Surgically relevant aspects of stem cell paracrine effects. Surgery 143(5):577–581 (epub 2008 Jan 30)CrossRefPubMedGoogle Scholar
  60. 60.
    Takeda Y, Mori T, Imabayashi H, Kiyono T, Gojo S, Miyoshi S, Hida N, Ita M, Segawa K, Ogawa S, Sakamoto M, Nakamura S, Umezawa A (2004) Can the life span of human marrow stromal cells be prolonged by bmi-1, E6, E7, and/or telomerase without affecting cardiomyogenic differentiation? J Gene Med 6:833–845CrossRefPubMedGoogle Scholar
  61. 61.
    Ksiazek K (2009) A comprehensive review on mesenchymal stem cell growth and senescence. Rejuvenation Res 12(2):105–116CrossRefPubMedGoogle Scholar
  62. 62.
    Terai M, Uyama T, Sugiki T, Li XK, Umezawa A, Kiyono T (2005) Immortalization of human fetal cells: the life span of umbilical cord blood-derived cells can be prolonged without manipulating p16INK4a/RB braking pathway. Mol Biol Cell 16:1491–1499CrossRefPubMedGoogle Scholar
  63. 63.
    Takeuchi M, Takeuchi K, Kohara A, Satoh M, Shioda S, Ozawa Y, Ohtani A, Morita K, Hirano T, Terai M, Umezawa A, Mizusawa H (2007) Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes. In Vitro Cell Dev Biol Anim 43(3–4):129–138 (epub 2007 May 21)CrossRefPubMedGoogle Scholar
  64. 64.
    Pelagiadis I, Dimitriou H, Kalmanti M (2008) Biologic characteristics of mesenchymal stromal cells and their clinical applications in pediatric patients. J Pediatr Hematol Oncol 30(4):301–309CrossRefPubMedGoogle Scholar
  65. 65.
    Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164:247–256CrossRefPubMedGoogle Scholar
  66. 66.
    Hong SH, Gang EJ, Jeong JA et al (2005) In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells. Biochem Biophys Res Commun 330:1153–1161CrossRefPubMedGoogle Scholar
  67. 67.
    Sugaya K (2003) Potential use of stem cells in neuroreplacement therapies for neurodegenerative diseases. Int Rev Cytol 228:1–30CrossRefPubMedGoogle Scholar
  68. 68.
    Dimmeler S, Zeiher AM (2009) Cell therapy of acute myocardial infarction: open questions. Cardiology 113(3):155–160 (epub 2008 Dec 22)CrossRefPubMedGoogle Scholar
  69. 69.
    Koc ON, Gerson SC, Lazarus HM et al (2002) Allogenic mesenchymal stem cell infusion for treatment of metachromatic leucodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30:215–222CrossRefPubMedGoogle Scholar
  70. 70.
    Whyte MP, Kurtzberg J, McAlister WH et al (2003) Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res 18:624–636CrossRefPubMedGoogle Scholar
  71. 71.
    Horwitz EM, Prockop DJ, Fitzpatrick LA et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309CrossRefPubMedGoogle Scholar
  72. 72.
    Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932CrossRefPubMedGoogle Scholar
  73. 73.
    Le Blanc K, Gotherstrom C, Ringden O et al (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79:1607–1614CrossRefPubMedGoogle Scholar
  74. 74.
    Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, Nasuelli N, Oggioni G, Testa L, Fagioli F (2008) Stem cell treatment in amyotrophic lateral sclerosis. J Neurol Sci 265(1):78–83CrossRefPubMedGoogle Scholar
  75. 75.
    Burt RK, Loh Y, Pearce W, Beohar N, Barr WG, Craig R, Wen Y, Rapp JA, Kessler J (2008) Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA 299(8):925–936CrossRefPubMedGoogle Scholar
  76. 76.
    Fuchs JR, Hannouche D, Terada S et al (2005) Cartilage engineering from ovine umbilical cord blood mesenchymal progenitor cells. Stem Cells 23:958–964CrossRefPubMedGoogle Scholar
  77. 77.
    Kunisaki SM, Freedman DA, Fauza DO (2006) Fetal tracheal reconstruction with cartilaginous grafts engineered from mesenchymal amniocytes. J Pediatr Surg 41:675–682CrossRefPubMedGoogle Scholar
  78. 78.
    Zsebo KM et al (1990) Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63:213–224CrossRefPubMedGoogle Scholar
  79. 79.
    Pan GJ, Chang ZY, Scholer HR, Pei D (2002) Stem cell pluripotency and transcription factor Oct4. Cell Res 12:321–329CrossRefPubMedGoogle Scholar
  80. 80.
    Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2(12):3081–3089CrossRefPubMedGoogle Scholar
  81. 81.
    Park IH, Lerou PH, Zhao R, Huo H, Daley GQ (2008) Generation of human-induced pluripotent stem cells. Nat Protoc 3(7):1180–1186CrossRefPubMedGoogle Scholar
  82. 82.
    Macchiarini P, Jungebluth P, Go T, Asnaghi MA, LE Rees, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372(9655):2023–2030 (epub 2008 Nov 18)CrossRefPubMedGoogle Scholar
  83. 83.
    Thapar N (2009) New frontiers in the treatment of Hirschsprung disease. J Pediatr Gastroenterol Nutr 48(Suppl 2):S92–S94CrossRefPubMedGoogle Scholar
  84. 84.
    Zani A, Cananzi M, Eaton S, Pierro A, De Coppi P (2009) Stem cells as a potential treatment of necrotizing enterocolitis. J Pediatr Surg 44(3):659–660 Comment on: J Pediatr Surg. 2008 Nov;43(11):1953–63CrossRefPubMedGoogle Scholar
  85. 85.
    Javaid-Ur-Rehman, Waseem T (2008) Intestinal tissue engineering: where do we stand? Surg Today 38:484–486Google Scholar
  86. 86.
    Grikscheit TC, Siddique A, Ochoa ER, Srinivasan A, Alsberg E, Hodin RA, Vacanti JP (2004) Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg 240(5):748–754CrossRefPubMedGoogle Scholar
  87. 87.
    Ware CB, Nelson AM, Blau CA (2006) A comparison of NIH-approved human ESC lines. Stem Cells 24(12):2677–2684CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Michela Pozzobon
    • 1
  • Marco Ghionzoli
    • 2
  • Paolo De Coppi
    • 2
  1. 1.Stem Cell Processing Laboratory, Department of PediatricsUniversity of PadovaPadovaItaly
  2. 2.Surgery UnitUCL Institute of Child Health & Great Ormond St HospitalLondonUK

Personalised recommendations