Advertisement

Pediatric Surgery International

, Volume 22, Issue 12, pp 945–959 | Cite as

Enteric nervous system and developmental abnormalities in childhood

  • Thambipillai Sri Paran
  • Udo Rolle
  • Prem Puri
Review Article

Abstract

ENS consists of a complex network of neurons, organised in several plexuses, which interact by means of numerous neurotransmitters. It is capable of modulating the intestinal motility, exocrine and endocrine secretions, microcirculation and immune and inflammatory responses within the gastrointestinal tract, independent of the central nervous system. Though the embryological development of various plexuses are completed by mid-way of gestation, the maturation of neurons and nerve plexuses appear to continue well after birth. Therefore, any histological or functional abnormalities related to the gastrointestinal function must be investigated with the ongoing maturational processes in mind.

Keywords

Neural Crest Cell Enteric Nervous System Myenteric Plexus Chronic Constipation Enteric Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Furness J (2006) The enteric nervous system. Blackwell, MassachusettsGoogle Scholar
  2. 2.
    Gershon MD (1999) The enteric nervous system: a second brain. Hosp Pract (Minneap) 34:31–32, 35–38, 41–32 passimGoogle Scholar
  3. 3.
    Goyal RK, Hirano I (1996) The enteric nervous system. N Engl J Med 334:1106–1115PubMedGoogle Scholar
  4. 4.
    Rolle U, Nemeth L, Puri P (2002) Nitrergic innervation of the normal gut and in motility disorders of childhood. J Pediatr Surg 37:551–567PubMedGoogle Scholar
  5. 5.
    Costa M, Brookes SJ, Hennig GW (2000) Anatomy and physiology of the enteric nervous system. Gut 47 Suppl 4: iv15–19; discussion iv26Google Scholar
  6. 6.
    JB Furness MC (1987) The enteric nervous system. Churchill Livingstone, New YorkGoogle Scholar
  7. 7.
    Gabella G (1984) Size of neurons and glial cells in the intramural ganglia of the hypertrophic intestine of the guinea-pig. J Neurocytol 13:73–84PubMedGoogle Scholar
  8. 8.
    Ruhl A, Franzke S, Stremmel W (2001) IL-1beta and IL-10 have dual effects on enteric glial cell proliferation. Neurogastroenterol Motil 13:89–94PubMedGoogle Scholar
  9. 9.
    Puri P, Shinkai T (2004) Pathogenesis of Hirschsprung’s disease and its variants: recent progress. Semin Pediatr Surg 13:18–24PubMedGoogle Scholar
  10. 10.
    Gershon MD, Chalazonitis A, Rothman TP (1993) From neural crest to bowel: development of the enteric nervous system. J Neurobiol 24:199–214PubMedGoogle Scholar
  11. 11.
    Yntema CL, Hammond WS (1954) The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol 101:515–541PubMedGoogle Scholar
  12. 12.
    Bates M (2002) Development of the enteric nervous system. Clin Perinatol 29:97–114PubMedGoogle Scholar
  13. 13.
    Young HM, Hearn CJ, Newgreen DF (2000) Embryology and development of the enteric nervous system. Gut 47 Suppl 4: iv12–14; discussion iv26Google Scholar
  14. 14.
    Roman V, Bagyanszki M, Krecsmarik M, Horvath A, Resch BA, Fekete E (2004) Spatial pattern analysis of nitrergic neurons in the developing myenteric plexus of the human fetal intestine. Cytometry A 57:108–112PubMedGoogle Scholar
  15. 15.
    Le Douarin NM, Teillet MA (1973) The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 30:31–48PubMedGoogle Scholar
  16. 16.
    Pomeranz HD, Gershon MD (1990) Colonization of the avian hindgut by cells derived from the sacral neural crest. Dev Biol 137:378–394PubMedGoogle Scholar
  17. 17.
    Burns AJ, Douarin NM (1998) The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development 125:4335–4347PubMedGoogle Scholar
  18. 18.
    Caniano DA, Ormsbee HS 3rd, Polito W, Sun CC, Barone FC, Hill JL (1985) Total intestinal aganglionosis. J Pediatr Surg 20:456–460PubMedGoogle Scholar
  19. 19.
    Furness J, Clere N, Vogalis F, Stebbing MJ (2003) The enteric nervous system and its extrinsic connections. Lippincot Williams, PhiladelphiaGoogle Scholar
  20. 20.
    Brandt CT, Tam PK, Gould SJ (1996) Nitrergic innervation of the human gut during early fetal development. J Pediatr Surg 31:661–664PubMedGoogle Scholar
  21. 21.
    Montgomery RK, Mulberg AE, Grand RJ (1999) Development of the human gastrointestinal tract: twenty years of progress. Gastroenterol116:702–731Google Scholar
  22. 22.
    Taraviras S, Pachnis V (1999) Development of the mammalian enteric nervous system. Curr Opin Genet Dev 9:321–327PubMedGoogle Scholar
  23. 23.
    Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383PubMedGoogle Scholar
  24. 24.
    Kusafuka T, Puri P (1997) The RET proto-oncogene: a challenge to our understanding of disease pathogenesis. Pediatr Surg Int 12:11–18PubMedGoogle Scholar
  25. 25.
    Martucciello G, Ceccherini I, Lerone M, Jasonni V (2000) Pathogenesis of Hirschsprung’s disease. J Pediatr Surg 35:1017–1025PubMedGoogle Scholar
  26. 26.
    Hellmich HL, Kos L, Cho ES, Mahon KA, Zimmer A (1996) Embryonic expression of glial cell-line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial-mesenchymal interactions. Mech Dev 54:95–105PubMedGoogle Scholar
  27. 27.
    Worley DS, Pisano JM, Choi ED, Walus L, Hession CA, Cate RL, Sanicola M, Birren SJ (2000) Developmental regulation of GDNF response and receptor expression in the enteric nervous system. Development 127:4383–4393PubMedGoogle Scholar
  28. 28.
    Young HM, Hearn CJ, Farlie PG, Canty AJ, Thomas PQ, Newgreen DF (2001) GDNF is a chemoattractant for enteric neural cells. Dev Biol 229:503–516PubMedGoogle Scholar
  29. 29.
    Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P, Smith D, Ponder B, Costantini F, Saarma M et al (1996) GDNF signalling through the Ret receptor tyrosine kinase. Nature 381:789–793PubMedGoogle Scholar
  30. 30.
    Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73PubMedGoogle Scholar
  31. 31.
    Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ et al (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76PubMedGoogle Scholar
  32. 32.
    Angrist M, Bolk S, Halushka M, Lapchak PA, Chakravarti A (1996) Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat Genet 14:341–344PubMedGoogle Scholar
  33. 33.
    Ohshiro K, Puri P (1998) Reduced glial cell line-derived neurotrophic factor level in aganglionic bowel in Hirschsprung’s disease. J Pediatr Surg 33:904–908PubMedGoogle Scholar
  34. 34.
    Newgreen D, Young HM (2002) Enteric nervous system: development and developmental disturbances–part 2. Pediatr Dev Pathol 5:329–349PubMedGoogle Scholar
  35. 35.
    Baynash AG, Hosoda K, Giaid A, Richardson JA, Emoto N, Hammer RE, Yanagisawa M (1994) Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79:1277–1285PubMedGoogle Scholar
  36. 36.
    Leibl MA, Ota T, Woodward MN, Kenny SE, Lloyd DA, Vaillant CR, Edgar DH (1999) Expression of endothelin 3 by mesenchymal cells of embryonic mouse caecum. Gut 44:246–252PubMedGoogle Scholar
  37. 37.
    Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC, Giaid A, Yanagisawa M (1994) Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79:1267–1276PubMedGoogle Scholar
  38. 38.
    Bidaud C, Salomon R, Van Camp G, Pelet A, Attie T, Eng C, Bonduelle M, Amiel J, Nihoul-Fekete C, Willems PJ et al (1997) Endothelin-3 gene mutations in isolated and syndromic Hirschsprung disease. Eur J Hum Genet 5:247–251PubMedGoogle Scholar
  39. 39.
    Amiel J, Attie T, Jan D, Pelet A, Edery P, Bidaud C, Lacombe D, Tam P, Simeoni J, Flori E et al (1996) Heterozygous endothelin receptor B (EDNRB) mutations in isolated Hirschsprung disease. Hum Mol Genet 5:355–357PubMedGoogle Scholar
  40. 40.
    Southard-Smith EM, Kos L, Pavan WJ (1998) Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 18:60–64PubMedGoogle Scholar
  41. 41.
    Kuhlbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M (1998) Sox10, a novel transcriptional modulator in glial cells. J Neurosci 18:237–250PubMedGoogle Scholar
  42. 42.
    Kuhlbrodt K, Schmidt C, Sock E, Pingault V, Bondurand N, Goossens M, Wegner M (1998) Functional analysis of Sox10 mutations found in human Waardenburg–Hirschsprung patients. J Biol Chem 273:23033–23038PubMedGoogle Scholar
  43. 43.
    Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Prehu MO, Puliti A, Herbarth B, Hermans-Borgmeyer I, Legius E, Matthijs G et al (1998) SOX10 mutations in patients with Waardenburg–Hirschsprung disease. Nat Genet 18:171–173PubMedGoogle Scholar
  44. 44.
    Matchkov VV, Rahman A, Peng H, Nilsson H, Aalkjaer C (2004) Junctional and nonjunctional effects of heptanol and glycyrrhetinic acid derivates in rat mesenteric small arteries. Br J Pharmacol 142:961–972PubMedGoogle Scholar
  45. 45.
    Hatano M, Aoki T, Dezawa M, Yusa S, Iitsuka Y, Koseki H, Taniguchi M, Tokuhisa T (1997) A novel pathogenesis of megacolon in Ncx/Hox11L.1 deficient mice. J Clin Invest 100:795–801PubMedCrossRefGoogle Scholar
  46. 46.
    Shirasawa S, Yunker AM, Roth KA, Brown GA, Horning S, Korsmeyer SJ (1997) Enx (Hox11L1)-deficient mice develop myenteric neuronal hyperplasia and megacolon. Nat Med 3:646–650PubMedGoogle Scholar
  47. 47.
    Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A (1995) W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373:347–349PubMedGoogle Scholar
  48. 48.
    Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K (1992) Requirement of c-kit for development of intestinal pacemaker system. Development 116:369–375PubMedGoogle Scholar
  49. 49.
    Hagger R, Finlayson C, Kahn F, De Oliveira R, Chimelli L, Kumar D (2000) A deficiency of interstitial cells of Cajal in Chagasic megacolon. J Auton Nerv Syst 80:108–111PubMedGoogle Scholar
  50. 50.
    Kenny SE, Connell MG, Rintala RJ, Vaillant C, Edgar DH, Lloyd DA (1998) Abnormal colonic interstitial cells of Cajal in children with anorectal malformations. J Pediatr Surg 33:130–132PubMedGoogle Scholar
  51. 51.
    Rolle U, Piotrowska AP, Nemeth L, Puri P (2002) Altered distribution of interstitial cells of Cajal in Hirschsprung disease. Arch Pathol Lab Med 126:928–933PubMedGoogle Scholar
  52. 52.
    Kunze WA, Furness JB (1999) The enteric nervous system and regulation of intestinal motility. Annu Rev Physiol 61:117–142PubMedGoogle Scholar
  53. 53.
    Karaosmanoglu T, Aygun B, Wade PR, Gershon MD (1996) Regional differences in the number of neurons in the myenteric plexus of the guinea pig small intestine and colon: an evaluation of markers used to count neurons. Anat Rec 244:470–480PubMedGoogle Scholar
  54. 54.
    Schuffler MD, Bird TD, Sumi SM, Cook A (1978) A familial neuronal disease presenting as intestinal pseudoobstruction. Gastroenterol 75:889–898Google Scholar
  55. 55.
    Smith VV (1993) Intestinal neuronal density in childhood: a baseline for the objective assessment of hypo- and hyperganglionosis. Pediatr Pathol 13:225–237PubMedGoogle Scholar
  56. 56.
    Ikeda K, Goto S, Nagasaki A, Taguchi T (1988) Hypogenesis of intestinal ganglion cells: a rare cause of intestinal obstruction simulating aganglionosis. Z Kinderchir 43:52–53PubMedGoogle Scholar
  57. 57.
    Meier-Ruge W, Morger R, Rehbein F (1970) Das hypoganglionaere megakolon als begleiterkrankung bei morbus hirschsprung. Z Kinderchir 8:254–264Google Scholar
  58. 58.
    Gabella G (1971) Neuron size and number in the myenteric plexus of the newborn and adult rat. J Anat 109:81–95PubMedGoogle Scholar
  59. 59.
    Gabella G (1987) The number of neurons in the small intestine of mice, guinea-pigs and sheep. Neuroscience 22:737–752PubMedGoogle Scholar
  60. 60.
    Wester T, O’Briain DS, Puri P (1999) Notable postnatal alterations in the myenteric plexus of normal human bowel. Gut 44:666–674PubMedCrossRefGoogle Scholar
  61. 61.
    Wiley W (2002) Aging and neural control of the GI tract: III. Senescent enteric nervous system: lessons from extraintestinal sites and nonmammalian species. Am J Physiol Gastrointest Liver Physiol 283:G1020–G1026PubMedGoogle Scholar
  62. 62.
    Gomes OA, de Souza RR, Liberti EA (1997) A preliminary investigation of the effects of aging on the nerve cell number in the myenteric ganglia of the human colon. Gerontol 43:210–217CrossRefGoogle Scholar
  63. 63.
    Vaos GC (1989) Quantitative assessment of the stage of neuronal maturation in the developing human fetal gut–a new dimension in the pathogenesis of developmental anomalies of the myenteric plexus. J Pediatr Surg 24:920–925PubMedGoogle Scholar
  64. 64.
    Roman V, Krecsmarik M, Bagyanszki M, Fekete E (2001) Evaluation of the total number of myenteric neurons in the developing chicken gut using cuprolinic blue histochemical staining and neurofilament immunocytochemistry. Histochem Cell Biol 116:241–246PubMedGoogle Scholar
  65. 65.
    Santer RM (1994) Survival of the population of NADPH-diaphorase stained myenteric neurons in the small intestine of aged rats. J Auton Nerv Syst 49:115–121PubMedGoogle Scholar
  66. 66.
    Takahashi T, Qoubaitary A, Owyang C, Wiley JW (2000) Decreased expression of nitric oxide synthase in the colonic myenteric plexus of aged rats. Brain Res 883:15–21PubMedGoogle Scholar
  67. 67.
    Roberts D, Gelperin D, Wiley JW (1994) Evidence for age-associated reduction in acetylcholine release and smooth muscle response in the rat colon. Am J Physiol 267: G515–G522PubMedGoogle Scholar
  68. 68.
    Powell AR, Reddix RA (2000) Differential effects of maturation on nicotinic- and muscarinic receptor-induced ion secretion in guinea pig distal colon. Proc Soc Exp Biol Med 224:147–151PubMedGoogle Scholar
  69. 69.
    Matini P, Mayer B, Faussone-Pellegrini MS (1997) Neurochemical differentiation of rat enteric neurons during pre- and postnatal life. Cell Tissue Res 288:11–23PubMedGoogle Scholar
  70. 70.
    Daniel EE, Wang YF (1999) Control systems of gastrointestinal motility are immature at birth in dogs. Neurogastroenterol Motil 11:375–392PubMedGoogle Scholar
  71. 71.
    Hagger R, Gharaie S, Finlayson C, Kumar D (1998) Regional and transmural density of interstitial cells of Cajal in human colon and rectum. Am J Physiol 275: G1309–G1316PubMedGoogle Scholar
  72. 72.
    Kenny SE, Connell G, Woodward MN, Lloyd DA, Gosden CM, Edgar DH, Vaillant C (1999) Ontogeny of interstitial cells of Cajal in the human intestine. J Pediatr Surg 34:1241–1247PubMedGoogle Scholar
  73. 73.
    Ward SM, Ordog T, Bayguinov JR, Horowitz B, Epperson A, Shen L, Westphal H, Sanders KM (1999) Development of interstitial cells of Cajal and pacemaking in mice lacking enteric nerves. Gastroenterol 117:584–594Google Scholar
  74. 74.
    Wu JJ, Rothman TP, Gershon MD (2000) Development of the interstitial cell of Cajal: origin, kit dependence and neuronal and nonneuronal sources of kit ligand. J Neurosci Res 59:384–401PubMedGoogle Scholar
  75. 75.
    Gershon MD (2000) Hirschsprung’s Disease. Harwood Academic, AmsterdamGoogle Scholar
  76. 76.
    McLain CR Jr (1963) Amniography Studies of the Gastrointestinal Motility of the Human Fetus. Am J Obstet Gynecol 86:1079–1087PubMedGoogle Scholar
  77. 77.
    Clark DA (1977) Times of first void and first stool in 500 newborns. Pediatrics 60:457–459PubMedGoogle Scholar
  78. 78.
    Sherry SN, Kramer I (1955) The time of passage of the first stool and first urine by the newborn infant. J Pediatr 46:158–159PubMedGoogle Scholar
  79. 79.
    Grand RJ, Watkins JB, Torti FM (1976) Development of the human gastrointestinal tract. A review. Gastroenterol 70:790–810Google Scholar
  80. 80.
    Cannon RA, Cheung AT (1989) Development of methodology for recording colonic myoelectrical activity in the infant primate. Biomater Artif Cells Artif Organs 17:81–92PubMedGoogle Scholar
  81. 81.
    Wester T, O’Briain S, Puri P (1998) Morphometric aspects of the submucous plexus in whole-mount preparations of normal human distal colon. J Pediatr Surg 33:619–622PubMedGoogle Scholar
  82. 82.
    Brandt CT, Graham A, Tam PK (1997) Densities of nitric oxide synthesizing nerves in smooth muscles of human gut during fetal development. J Pediatr Surg 32:1314–1317PubMedGoogle Scholar
  83. 83.
    Giaroni C, De Ponti F, Cosentino M, Lecchini S, Frigo G (1999) Plasticity in the enteric nervous system. Gastroenterol 117:1438–1458Google Scholar
  84. 84.
    Yunker AM, Galligan JJ (1994) Extrinsic denervation increases NADPH diaphorase staining in myenteric nerves of guinea pig ileum. Neurosci Lett 167:51–54PubMedGoogle Scholar
  85. 85.
    Yunker AM, Galligan JJ (1998) Extrinsic denervation increases myenteric nitric oxide synthase-containing neurons and inhibitory neuromuscular transmission in guinea pig. J Auton Nerv Syst 71:148–158PubMedGoogle Scholar
  86. 86.
    Burks T (1994) Neurotransmission and neurotransmitters. In: Johnson L (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 211–242Google Scholar
  87. 87.
    Kilbinger H, Wagner P (1975) Inhibition by oxotremorine of acetylcholine resting release from guinea pig-ileum longitudinal muscle strips. Naunyn Schmiedebergs Arch Pharmacol 287:47–60PubMedGoogle Scholar
  88. 88.
    Brookes SJ (1993) Neuronal nitric oxide in the gut. J Gastroenterol Hepatol 8:590–603PubMedGoogle Scholar
  89. 89.
    Burleigh DE (1992) Ng-nitro-l-arginine reduces nonadrenergic, noncholinergic relaxations of human gut. Gastroenterol 102:679–683Google Scholar
  90. 90.
    Shuttleworth CW, Murphy R, Furness JB (1991) Evidence that nitric oxide participates in non-adrenergic inhibitory transmission to intestinal muscle in the guinea-pig. Neurosci Lett 130:77–80PubMedGoogle Scholar
  91. 91.
    Shuttleworth CW, Xue C, Ward SM, de Vente J, Sanders KM (1993) Immunohistochemical localization of 3′,5′-cyclic guanosine monophosphate in the canine proximal colon: responses to nitric oxide and electrical stimulation of enteric inhibitory neurons. Neuroscience 56:513–522PubMedGoogle Scholar
  92. 92.
    Vanderwinden JM, Mailleux P, Schiffmann SN, Vanderhaeghen JJ, De Laet MH (1992) Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis. N Engl J Med 327:511–515PubMedCrossRefGoogle Scholar
  93. 93.
    Vanderwinden JM, De Laet MH, Schiffmann SN, Mailleux P, Lowenstein CJ, Snyder SH, Vanderhaeghen JJ (1993) Nitric oxide synthase distribution in the enteric nervous system of Hirschsprung’s disease. Gastroenterol 105:969–973Google Scholar
  94. 94.
    Kobayashi H, O’Briain DS, Puri P (1995) Immunochemical characterization of neural cell adhesion molecule (NCAM), nitric oxide synthase, and neurofilament protein expression in pyloric muscle of patients with pyloric stenosis. J Pediatr Gastroenterol Nutr 20:319–325PubMedGoogle Scholar
  95. 95.
    Kobayashi H, O’Briain DS, Puri P (1994) Lack of expression of NADPH-diaphorase and neural cell adhesion molecule (NCAM) in colonic muscle of patients with Hirschsprung’s disease. J Pediatr Surg 29:301–304PubMedGoogle Scholar
  96. 96.
    Bealer JF, Natuzzi ES, Buscher C, Ursell PC, Flake AW, Adzick NS, Harrison MR (1994) Nitric oxide synthase is deficient in the aganglionic colon of patients with Hirschsprung’s disease. Pediatrics 93:647–651PubMedGoogle Scholar
  97. 97.
    Larsson LT, Shen Z, Ekblad E, Sundler F, Alm P, Andersson KE (1995) Lack of neuronal nitric oxide synthase in nerve fibers of aganglionic intestine: a clue to Hirschsprung’s disease. J Pediatr Gastroenterol Nutr 20:49–53PubMedGoogle Scholar
  98. 98.
    Hirakawa H, Kobayashi H, O’Briain DS, Puri P (1995) Absence of NADPH-diaphorase activity in internal anal sphincter (IAS) achalasia. J Pediatr Gastroenterol Nutr 20:54–58PubMedGoogle Scholar
  99. 99.
    Scherer-Singler U, Vincent SR, Kimura H, McGeer EG (1983) Demonstration of a unique population of neurons with NADPH-diaphorase histochemistry. J Neurosci Methods 9:229–234PubMedGoogle Scholar
  100. 100.
    Gabella G (1969) Detection of nerve cells by a histochemical technic. Experientia 25:218–219PubMedGoogle Scholar
  101. 101.
    Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci USA 88:7797–7801PubMedGoogle Scholar
  102. 102.
    Hope BT, Michael GJ, Knigge KM, Vincent SR (1991) Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci USA 88:2811–2814PubMedGoogle Scholar
  103. 103.
    Furness JB, Costa M (1974) The adrenergic innervation of the gastrointestinal tract. Ergeb Physiol 69:2–51PubMedGoogle Scholar
  104. 104.
    Ormsbee HS 3rd, Fondacaro JD (1985) Action of serotonin on the gastrointestinal tract. Proc Soc Exp Biol Med 178:333–338PubMedGoogle Scholar
  105. 105.
    Brookes SJ (2001) Classes of enteric nerve cells in the guinea-pig small intestine. Anat Rec 262:58–70PubMedGoogle Scholar
  106. 106.
    Holzer P (2002) Sensory neurone responses to mucosal noxae in the upper gut: relevance to mucosal integrity and gastrointestinal pain. Neurogastroenterol Motil 14:459–475PubMedGoogle Scholar
  107. 107.
    Furness JB (2000) Types of neurons in the enteric nervous system. J Auton Nerv Syst 81:87–96PubMedGoogle Scholar
  108. 108.
    Kirkup AJ, Brunsden AM, Grundy D (2001) Receptors and transmission in the brain-gut axis: potential for novel therapies. I. Receptors on visceral afferents. Am J Physiol Gastrointest Liver Physiol 280:G787–G794PubMedGoogle Scholar
  109. 109.
    Furness JB, Clerc N, Gola M, Kunze WA, FletcherEK (2000) Identification of component neurons and organisations of enteric circuits. In: Krammer HJ (eds) Falk symposium 112. Nuerogastroenterology. From basic to the clinics. Kluwer, DordrechtGoogle Scholar
  110. 110.
    Porter AJ, Wattchow DA, Brookes SJ, Costa M (2002) Cholinergic and nitrergic interneurones in the myenteric plexus of the human colon. Gut 51:70–75PubMedGoogle Scholar
  111. 111.
    Wood JD, Alpers DH, Andrews PL (1999) Fundamentals of neurogastroenterology. Gut 45(Suppl 2):II6–II16PubMedCrossRefGoogle Scholar
  112. 112.
    Hansen MB (2002) Small intestinal manometry. Physiol Res 51:541–556PubMedGoogle Scholar
  113. 113.
    Hansen MB, Dresner LS, Wait RB (1998) Profile of neurohumoral agents on mesenteric and intestinal blood flow in health and disease. Physiol Res 47:307–327PubMedGoogle Scholar
  114. 114.
    Vanden Berghe P, Bisschops R, Tack J (2001) Imaging of neuronal activity in the gut. Curr Opin Pharmacol 1:563–567PubMedGoogle Scholar
  115. 115.
    Loening-Baucke V (1998) Constipation in children. N Engl J Med 339:1155–1156PubMedGoogle Scholar
  116. 116.
    Loening-Baucke V (1993) Chronic constipation in children. Gastroenterol 105:1557–1564Google Scholar
  117. 117.
    Taitz LS, Wales JK, Urwin OM, Molnar D (1986) Factors associated with outcome in management of defecation disorders. Arch Dis Child 61:472–477PubMedGoogle Scholar
  118. 118.
    Tomita R, Munakata K, Howard ER, Fujisaki S (2004) Histological studies on Hirschsprung’s disease and its allied disorders in childhood. Hepatogastroenterol 51:1042–1044Google Scholar
  119. 119.
    van Ginkel R, Reitsma JB, Buller HA, van Wijk MP, Taminiau JA, Benninga MA (2003) Childhood constipation: longitudinal follow-up beyond puberty. Gastroenterol 125:357–363Google Scholar
  120. 120.
    Procter E, Loader P (2003) A 6-year follow-up study of chronic constipation and soiling in a specialist paediatric service. Child Care Health Dev 29:103–109PubMedGoogle Scholar
  121. 121.
    Holschneider AM, Meier-Ruge W, Ure BM (1994) Hirschsprung’s disease and allied disorders–a review. Eur J Pediatr Surg 4:260–266PubMedCrossRefGoogle Scholar
  122. 122.
    Qualman SJ, Murray R (1994) Aganglionosis and related disorders. Hum Pathol 25:1141–1149PubMedGoogle Scholar
  123. 123.
    Gershon MD (1981) The enteric nervous system. Annu Rev Neurosci 4:227–272PubMedGoogle Scholar
  124. 124.
    Spouge D, Baird PA (1985) Hirschsprung disease in a large birth cohort. Teratology 32:171–177PubMedGoogle Scholar
  125. 125.
    Puri P (1996) Hirschsprung’s disease. In: Puri P (ed) Newborn surgery. Butterworth, Oxford, pp 363–378Google Scholar
  126. 126.
    Cass D (1990) Aganglionosis: associated anomalies. J Paediatr Child Health 26:351–354PubMedGoogle Scholar
  127. 127.
    Passarge E (1967) The genetics of Hirschsprung’s disease. Evidence for heterogeneous etiology and a study of sixty-three families. N Engl J Med 276:138–143PubMedCrossRefGoogle Scholar
  128. 128.
    Goldberg EL (1984) An epidemiological study of Hirschsprung’s disease. Int J Epidemiol 13:479–485PubMedGoogle Scholar
  129. 129.
    Orr JD, Scobie WG (1983) Presentation and incidence of Hirschsprung’s disease. Br Med J (Clin Res Ed) 287:1671CrossRefGoogle Scholar
  130. 130.
    Amiel J, Lyonnet S (2001) Hirschsprung disease, associated syndromes, and genetics: a review. J Med Genet 38:729–739PubMedGoogle Scholar
  131. 131.
    Puri P (2003) Hirschsprung’s disease. In: Puri P (ed) Newborn surgery. Arnold, LondonGoogle Scholar
  132. 132.
    Cass DT (2000) Hirschsprung’s Disease. Harwood Academic, AmsterdamGoogle Scholar
  133. 133.
    Badner JA, Chakravarti A (1990) Waardenburg syndrome and Hirschsprung disease: evidence for pleiotropic effects of a single dominant gene. Am J Med Genet 35:100–104PubMedGoogle Scholar
  134. 134.
    Bernfield M, Banerje S, Koda J (1984) Remodelling of basement membrane as a mechanism of morphogenetic tissue interaction. In: Trelstadt R (ed) The role of extracellular matrix in development. Alan RL Liss, New YorkGoogle Scholar
  135. 135.
    Brauer PR, Markwald RR (1987) Attachment of neural crest cells to endogenous extracellular matrices. Anat Rec 219:275–285PubMedGoogle Scholar
  136. 136.
    E Okamoto TU (1967) Embryogenesis of intramural ganglia of the gut and its relation to Hirschsprung’s disease. J Pediatr Surg 2:437–443Google Scholar
  137. 137.
    Puri P (2000) Hirschsprung’s disease: clinical generalities. In: Puri P, Holschneider AM (eds) Hirschsprung’s disease and allied disorders. Harwood Academic, Amsterdam, pp 129–135Google Scholar
  138. 138.
    Badner JA, Sieber WK, Garver KL, Chakravarti A (1990) A genetic study of Hirschsprung disease. Am J Hum Genet 46:568–580PubMedGoogle Scholar
  139. 139.
    Meier-Ruge W (1971) Uber ein erkrankungsblid des colon mit hisrschsprung symptomatik. Verh Dtsch Ges Pathol 55:506–510PubMedGoogle Scholar
  140. 140.
    Fadda B, WM Meier-Ruge W (1983) Neuronale intestinale dysplasie. Eine kritische 2-Jahresanalyse klinischer und bioptischer diagnose. Z Kinderchir 138:284–287Google Scholar
  141. 141.
    Puri P, Rolle U (2004) Variant Hirschsprung’s disease. Semin Pediatr Surg 13:293–299PubMedGoogle Scholar
  142. 142.
    Puri P (2003) Intestinal neuronal dysplasia. Semin Pediatr Surg 12:259–264PubMedGoogle Scholar
  143. 143.
    Puri P (2000) Intestinal neuronal dysplasia. In: Holschneider A, Puri P (eds) Hirschsprung’s disease and allied disorders. Harwood academic publishers, Amsterdam, pp 147–152Google Scholar
  144. 144.
    Koletzko S, Ballauff A, Hadziselimovic F, Enck P (1993) Is histological diagnosis of neuronal intestinal dysplasia related to clinical and manometric findings in constipated children? Results of a pilot study. J Pediatr Gastroenterol Nutr 17:59–65PubMedGoogle Scholar
  145. 145.
    Puri P (1997) Variant Hirschsprung’s disease. J Pediatr Surg 32:149–157PubMedGoogle Scholar
  146. 146.
    Meier-Ruge W (1992) Epidemiology of congenital innervation defects of the distal colon. Virchows Arch A Pathol Anat Histopathol 420:171–177PubMedGoogle Scholar
  147. 147.
    Milla PJ, Smith VV (1993) Intestinal neuronal dysplasia. J Pediatr Gastroenterol Nutr 17:356–357PubMedCrossRefGoogle Scholar
  148. 148.
    Martucciello G, Caffarena PE, Lerone M, Mattioli G, Barabino A, Bisio G, Jasonni V (1994) Neuronal intestinal dysplasia: clinical experience in Italian patients. Eur J Pediatr Surg 4:287–292PubMedGoogle Scholar
  149. 149.
    Csury L, Pena A (1995) Intestinal neuronal dysplasia: myth or reality? Pediatr Surg Int 10:441–446Google Scholar
  150. 150.
    Kapur RP (2003) Neuronal dysplasia: a controversial pathological correlate of intestinal pseudo-obstruction. Am J Med Genet A 122:287–293PubMedGoogle Scholar
  151. 151.
    Lake BD (1995) Intestinal neuronal dysplasia. Why does it only occur in parts of Europe? Virchows Arch 426:537–539PubMedGoogle Scholar
  152. 152.
    Oguzkurt P, Senocak ME, Akcoren Z, Buyukpamukcu N (2000) Diagnostic difficulties in neuronal intestinal dysplasia and segmental colitis. J Pediatr Surg 35:519–521PubMedGoogle Scholar
  153. 153.
    Yamataka A, Hatano M, Kobayashi H, Wang K, Miyahara K, Sueyoshi N, Miyano T (2001) Intestinal neuronal dysplasia-like pathology in Ncx/Hox11L.1 gene-deficient mice. J Pediatr Surg 36:1293–1296PubMedGoogle Scholar
  154. 154.
    Costa M, Fava M, Seri M, Cusano R, Sancandi M, Forabosco P, Lerone M, Martucciello G, Romeo G, Ceccherini I (2000) Evaluation of the HOX11L1 gene as a candidate for congenital disorders of intestinal innervation. J Med Genet 37:E9PubMedGoogle Scholar
  155. 155.
    Scharli AF, Sossai R (1998) Hypoganglionosis. Semin Pediatr Surg 7:187–191PubMedGoogle Scholar
  156. 156.
    Watanabe Y, Ito F, Ando H, Seo T, Kaneko K, Harada T, Iino S (1999) Morphological investigation of the enteric nervous system in Hirschsprung’s disease and hypoganglionosis using whole-mount colon preparation. J Pediatr Surg 34:445–449PubMedGoogle Scholar
  157. 157.
    Rolle U, Yoneda A, Solari V, Nemeth L, Puri P (2002) Abnormalities of C-Kit-positive cellular network in isolated hypoganglionosis. J Pediatr Surg 37:709–714PubMedGoogle Scholar
  158. 158.
    Kobayashi H, Li Z, Yamataka A, Lane GJ, Miyano T (2003) Overexpression of neural cell adhesion molecule (NCAM) antigens on intestinal smooth muscles in hypoganglionosis: is hypoganglionosis a disorder of the neuromuscular junction? Pediatr Surg Int 19:190–193PubMedGoogle Scholar
  159. 159.
    Lake BD, Puri P, Nixon HH, Claireaux AE (1978) Hirschsprung’s disease: an appraisal of histochemically demonstrated acetylcholinesterase activity in suction rectal biopsy specimens as an aid to diagnosis. Arch Pathol Lab Med 102:244–247PubMedGoogle Scholar
  160. 160.
    Davidson M, Bauer CH (1958) Studies of distal colonic motility in children. IV. Achalasia of the distal rectal segment despite presence of ganglia in the myenteric plexuses of this area. Pediatrics 21:746–761PubMedGoogle Scholar
  161. 161.
    Neilson IR, Yazbeck S (1990) Ultrashort Hirschsprung’s disease: myth or reality. J Pediatr Surg 25:1135–1138PubMedGoogle Scholar
  162. 162.
    Holschneider AM (2000) Anal sphincter achalasia and ultrashort Hirschsprung’s disease. In: Holschneider AM, Puri P (eds) Hirschsprung’s disease and allied disorders. Harwood Academic, Amsterdam, pp 399–424Google Scholar
  163. 163.
    Oue T, Puri P (1999) Altered intramuscular innervation and synapse formation in internal sphincter achalasia. Pediatr Surg Int 15:192–194PubMedGoogle Scholar
  164. 164.
    Kobayashi H, Hirakawa H, Puri P (1996) Abnormal internal anal sphincter innervation in patients with Hirschsprung’s disease and allied disorders. J Pediatr Surg 31:794–799PubMedGoogle Scholar
  165. 165.
    Piotrowska AP, Rolle U, Chertin B, De Caluwe D, Bianchi A, Puri P (2003) Alterations in smooth muscle contractile and cytoskeleton proteins and interstitial cells of Cajal in megacystis microcolon intestinal hypoperistalsis syndrome. J Pediatr Surg 38:749–755PubMedGoogle Scholar
  166. 166.
    De Caluwe D, Yoneda A, Akl U, Puri P (2001) Internal anal sphincter achalasia: outcome after internal sphincter myectomy. J Pediatr Surg 36:736–738PubMedGoogle Scholar
  167. 167.
    Ciamarra P, Nurko S, Barksdale E, Fishman S, Di Lorenzo C (2003) Internal anal sphincter achalasia in children: clinical characteristics and treatment with Clostridium botulinum toxin. J Pediatr Gastroenterol Nutr 37:315–319PubMedGoogle Scholar
  168. 168.
    Langer JC, Birnbaum E (1997) Preliminary experience with intrasphincteric botulinum toxin for persistent constipation after pull-through for Hirschsprung’s disease. J Pediatr Surg 32:1059–1061; discussion 1061–1052Google Scholar
  169. 169.
    Puri P, Lake BD, Gorman F, O’Donnell B, Nixon HH (1983) Megacystis-microcolon-intestinal hypoperistalsis syndrome: a visceral myopathy. J Pediatr Surg 18:64–69PubMedGoogle Scholar
  170. 170.
    Ciftci AO, Cook RC, van Velzen D (1996) Megacystis microcolon intestinal hypoperistalsis syndrome: evidence of a primary myocellular defect of contractile fiber synthesis. J Pediatr Surg 31:1706–1711PubMedGoogle Scholar
  171. 171.
    Rolle U, O’Briain S, Pearl RH, Puri P (2002) Megacystis-microcolon-intestinal hypoperistalsis syndrome: evidence of intestinal myopathy. Pediatr Surg Int 18:2–5PubMedGoogle Scholar
  172. 172.
    Xu W, Gelber S, Orr-Urtreger A, Armstrong D, Lewis RA, Ou CN, Patrick J, Role L, De Biasi M, Beaudet AL (1999) Megacystis, mydriasis, and ion channel defect in mice lacking the alpha3 neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 96:5746–5751PubMedGoogle Scholar
  173. 173.
    Xu W, Orr-Urtreger A, Nigro F, Gelber S, Sutcliffe CB, Armstrong D, Patrick JW, Role LW, Beaudet AL, De Biasi M (1999) Multiorgan autonomic dysfunction in mice lacking the beta2 and the beta4 subunits of neuronal nicotinic acetylcholine receptors. J Neurosci 19:9298–9305PubMedGoogle Scholar
  174. 174.
    Richardson CE, Morgan JM, Jasani B, Green JT, Rhodes J, Williams GT, Lindstrom J, Wonnacott S, Thomas GA, Smith V (2001) Megacystis-microcolon-intestinal hypoperistalsis syndrome and the absence of the alpha3 nicotinic acetylcholine receptor subunit. Gastroenterol 121:350–357Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Thambipillai Sri Paran
    • 1
  • Udo Rolle
    • 1
    • 2
  • Prem Puri
    • 1
  1. 1.Children’s Research Centre, Our Lady’s Children’s HospitalUniversity College DublinDublin 12Ireland
  2. 2.Department of Paediatric SurgeryUniversity of LeipzigLeipzigGermany

Personalised recommendations