Pediatric Surgery International

, Volume 21, Issue 4, pp 255–263 | Cite as

Acetylcholinesterase in Hirschsprung’s disease

Review Article


The association between the congenital absence of colonic ganglion cells and an increased acetylcholinesterase (AChE) expression in the affected tissue is of diagnostic importance in Hirschsprung’s disease (HSCR). Investigation of AChE’s function in development may also help unravel some of the complex pathophysiology in HSCR. Normal nerves do not stain for AChE, but increased AChE expression is associated with the hypertrophied extrinsic nerve fibres of the aganglionic segment in HSCR. Although a high degree of histochemical diagnostic accuracy exists, results are not always uniform, and false positives and false negatives are reported. False negative results are primarily related to age, and an absence of AChE reaction does not exclude HSCR in neonates within the first 3 weeks after birth. AChE staining results may lack uniformity, resulting in a number of technical modifications that have been made to improve standardization of AChE staining. At least two distinct histological patterns are described, types A and B. The interpretation of increased AChE staining patterns in ganglionated bowel at the time of surgical pull-through remains a problem in patients with HSCR. The development of rapid staining techniques has helped to identify normal ganglionated bowel with greater certainty. The presence of fine AChE neurofibrils in the ganglionated segment has contributed to the debate surrounding intestinal neuronal dysplasia. Quantitative assay of cholinesterase activity confirms the pattern of histochemical staining. AChE is particularly increased in relation to butrylcholinesterase, with one molecular form, the G4 tetrameric form, predominating. It is likely that the raised levels of AChE in aganglionic tissue are the transcriptional consequence of the abnormalities in signalling molecules that characterize HSCR. Evidence suggests that this AChE is functioning in a nonenzymatic capacity to promote cell adhesion and differentiation and that the hypertrophied nerves and neurofibrils may be the result of this increased AChE expression.


Acetylcholinesterase AChE Biochemistry Histochemistry Hirschsprung’s Signalling Nonclassical 


  1. 1.
    Ariel I, Vinograd I, Lernau OZ, Nissan S, Rosenmann E (1983) Rectal mucosal biopsy in aganglionosis and allied conditions. Hum Pathol 14(11):991–995Google Scholar
  2. 2.
    Barr LC, Booth J, Filipe MI, Lawson JO (1985) Clinical evaluation of the histochemical diagnosis of Hirschsprung’s disease. Gut 26(4):393–399Google Scholar
  3. 3.
    Biagioni S, Odorisio T, Poiana G, Scarsella G, Augusti-Tocco G (1989) Acetylcholinesterase in the development of chick dorsal root ganglia. Int J Dev Neurosci 7:267–273Google Scholar
  4. 4.
    Bigbee JW, Sharma KV, Chan EL, Bogler O (2000) Evidence for the direct role of acetylcholinesteras in neurite outgrowth in primary dorsal root ganglion neurons. Brain Res 861:354–362CrossRefPubMedGoogle Scholar
  5. 5.
    Blisard KS, Kleinman R (1986) Hirschsprung’s disease: a clinical and pathological overview. Hum Pathol 17:1189–1191Google Scholar
  6. 6.
    Bonham JR, Dale G, Scott D, Wagget J (1985) Molecular forms of acetylcholinesterase in Hirschsprung’s disease. Clin Chim Acta 145(3):297–305Google Scholar
  7. 7.
    Borchard F, Meier-Ruge W, Wiebecke B, Briner J, Muntefering H, Fodisch HF, Holschneider AM, Schmidt A, Enck P, Stolte M (1991) Innervation abnormalities of the large bowel: classification and diagnosis. Pathologe 12:171–174Google Scholar
  8. 8.
    Boston VE, Dale G, Riley KW (1975) Diagnosis of Hirschsprung’s disease by quantitative biochemical assay of acetylcholinesterase in rectal tissue. Lancet 2(7942):951–953Google Scholar
  9. 9.
    Causse E, Vaysse P, Fabre J, Valdiguie P, Thouvenot JP(1987) The diagnostic value of acetylcholinesterase/butrylcholinesterase ratio in Hirschsprung’s disease. Am J Clin Pathol 88(4):477–480Google Scholar
  10. 10.
    Chow CW, Chan WC, Yue PC (1977) Histochemical criteria for the diagnosis of Hirschsprung’s disease in rectal suction biopsies by acetylcholinesterase activity. J Pediatr Surg 12(5):675–680Google Scholar
  11. 11.
    Chubb IW, Pilowsky PM, Springell HJ, Pollard AC (1979) Acetylcholinesterase in human amniotic fluid: an index of fetal neural development. Lancet 1(8118):688–690Google Scholar
  12. 12.
    Dale G, Bonham JR, Lowdon P, Roberts DF (1979) Amniotic-fluid acetylcholinesterase and neural-tube defects. Lancet 1(8121):880–881Google Scholar
  13. 13.
    Dale G, Bonham JR, Riley KW, Wagget J (1977) An improved method for the determination of acetylcholinesterase activity in rectal biopsy tissue from patients with Hirschsprung’s disease. Clin Chim Acta 77(3):407–413Google Scholar
  14. 14.
    Darboux I, Barthalay Y, Piovant M, Hipeau-Jacquotte R (1996) The structure–function relationships in Drosophila neurotactin show that cholinesterasic domains may have adhesive properties. EMBO J 15(18):4835–4843Google Scholar
  15. 15.
    Day T, Greenfield SA (2004) Bioactivity of a peptide derived from acetylcholinesterase in hippocampal organotypic cultures. Exp Brain Res 155(4):500–508Google Scholar
  16. 16.
    Day T, Greenfield SA (2003) A peptide derived from acetylcholinesterase induces neuronal cell death: characterization of possible mechanisms. Exp Brain Res 153(3):334–342Google Scholar
  17. 17.
    De Brito IA, Maksoud JG (1987) Evolution with age of the acetylcholinesterase activity in rectal suction biopsy in Hirschsprung’s disease. J Pediatr Surg 22(5):425–430Google Scholar
  18. 18.
    De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC (2001) A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemistry 40:10447–10457Google Scholar
  19. 19.
    De Wet PM, Boston VE, Rode H, Davies MR, Cywes S (1980) The determination of total cholinesterase in rectal biopsy tissue from patients with Hirschsprung’s disease. S Afr Med J 57(7):240–242Google Scholar
  20. 20.
    Dobbins W, Bill A (1965) Diagnosis of Hirschsprung’s disease excluded by rectal suction biopsy. N Engl J Med 272(19):990–993Google Scholar
  21. 21.
    Dodero P, Martuccielo G (1988) Hirschsprung’s disease: alpha-naphtylesterase activity for enzyme-histochemical evaluation of the extent of the aganglionic segment during surgery. Pediatr Surg Int 4:269–274Google Scholar
  22. 22.
    Drews U (1975) Cholinesterases in embryonic development. Prog Histochem Cytochem 7:1–53Google Scholar
  23. 23.
    Duclert A, Changeux JP (1995) Acetylcholine receptor gene expression at the developing neuromuscular junction. Physiol Rev 75(2):339–368PubMedGoogle Scholar
  24. 24.
    Elema JD, de Vries JA, Vos LJM (1973) Intensity and proximal extension of acetylcholinesterase activity in the mucosa of the rectosigmoid in Hirschsprung’s disease. J Pediatr Surg 8(3):361–366Google Scholar
  25. 25.
    Facer P, Knowles CH, Thomas PK, Tam PK, Williams NS, Anand P (2001) Decreased tyrosine kinase C expression may reflect developmental abnormalities in Hirschsprung’s disease and idiopathic slow-transit constipation. Br J Surg 88(4):545-552Google Scholar
  26. 26.
    Fadda B, Pistor G, Meier-Ruge W, Hoffmann von K- H, Muntefering H, Espinosa R (1987) Symptoms, diagnosis and therapy of neuronal intestinal dysplasia masked by Hirschsprung’s disease. Pediatr Surg Int 2:76–80Google Scholar
  27. 27.
    Fayuk D, Yakel JL (2004) Regulation of nicotinic acetylcholine receptor channel function by acetylcholinesterase inhibitors in rat hippocampal CA1 interneurons. Mol Pharmacol 66(3):658–666Google Scholar
  28. 28.
    Fernandez HL, Donoso JA (1988) Exercise selectively increases G4 AChE activity in fast-twitch muscle. J Appl Physiol 80:357–362Google Scholar
  29. 29.
    Friedrich U, Vetter R, Weiss HJ, Hentschel H (1994) Quantitative investigations of acetylcholinesterase activities in colorectal malformations. Eur J Pediatr Surg 4:352–357Google Scholar
  30. 30.
    Garrett JR, Howard ER, Nixon HH (1969) Histochemical diagnosis of Hirschsprung’s disease. Lancet 2(7617):436Google Scholar
  31. 31.
    Gisiger V, Belisle M, Gardiner PF (1994) Acetylcholinesterase adaptation to voluntary wheel running is proportional to the volume of activity in fast, but not slow, rat hindlimb muscles. Eur J Neurosci 6(5):673–680Google Scholar
  32. 32.
    Goto S, Ikeda I, Toyohara T (1983) Histochemical confirmation of acetylcholinesterase-activity in rectal suction biopsy from neonates with Hirschsprung’s disease. Z Kinderchir 39:246–249Google Scholar
  33. 33.
    Goto S, Ikeda K (1985) Histochemical acetylcholinesterase activity in the mucosa of the resected bowel in Hirschsprung’s disease. An analysis of 30 cases. Z Kinderchir 40(1):26–30Google Scholar
  34. 34.
    Greenfield S, Vaux DJ (2002) Parkinson’s disease, Alzheimer’s disease and motor neurone disease: identifying a common mechanism. Neuroscience 113(3):485–492Google Scholar
  35. 35.
    Hess R, Scarpelli DG, Pearse AGE (1958) The cytochemical localization of oxidative enzymes. II. Pyridine nucleotide-linked dehydrogenases. J Biophys Biochem Cytol 4(6):753–760Google Scholar
  36. 36.
    Hirsig J, Briner J, Rickham PP (1979) Problems in the diagnosis of Hirschsprung’s disease due to false-negative acetylcholinesterase reaction in suction biopsy in neonates. Z Kinderchir 26(3):242–247Google Scholar
  37. 37.
    Huntley CC, Shaffner LD, Challa VR, Lyerly AD (1982) Histochemical diagnosis of Hirschsprung disease. Pediatrics 69(6):755–761Google Scholar
  38. 38.
    Ikawa H, Kawano H, Takeda Y, Masuyama H, Watanabe K, Endo M, Yokoyama J, Kitajima M, Uyemura K, Kawamura K (1997) Impaired expression of neural cell adhesion molecule L1 in the extrinsic nerve fibres in Hirschsprung’s disease. J Pediatr Surg 32:542–545Google Scholar
  39. 39.
    Ikawa H, Kim SH, Hendren WH, Donahoe PK (1986) Acetylcholinesterase and manometry in the diagnosis of the constipated child. Arch Surg 121(4):435–438Google Scholar
  40. 40.
    Inestrosa NC, Alvarez A, Perez CA, Moreno RD, Vicente M, Linker C, Casanueva OI, Soto C, Garrido J (1996) Acetylcholinesterase accelerates assembly of amyloid beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 16:881–891Google Scholar
  41. 41.
    Ito Y, Tatekawa I, Nishiyama F, Hirano H (1987) Ultrastructural localization of acetylcholinesterase activity in Hirschsprung’s disease. Arch Pathol Lab Med 111(2):161–165Google Scholar
  42. 42.
    Johnson G, Moore SW (2000) Cholinesterases modulate cell adhesion in human neuroblastoma cells in vitro. Int J Dev Neurosci 18(8):781–790Google Scholar
  43. 43.
    Johnson G, Moore SW (2004) Identification of a structural site on acetylcholinesterase that promotes neurite outgrowth and binds laminin-1 and collagen IV. Biochem Biophys Res Commun 319(2):448–455Google Scholar
  44. 44.
    Johnson G, Moore SW (2003) Human acetylcholinesterase binds to mouse laminin-1 and human collagen IV by an electrostatic mechanism at the peripheral anionic site. Neurosci Lett 337(1):37–40Google Scholar
  45. 45.
    Kamijo K, Hiatt RB, Koelle GB(1953) Congenital megacolon. A comparison of the specific and hypertrophied segments with respect to cholinesterase activities and sensitivities to acetylcholine, DFP and the barium ion. Gastroenterology 24:173Google Scholar
  46. 46.
    Karnowsky MJ, Roots L (1964) A “direct-colouring” thiocholine method for cholinesterase. J Histochem Cytochem 12:219PubMedGoogle Scholar
  47. 47.
    Kaufer D, Friedman A, Seidman S, Soreq H (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393(6683):373–377Google Scholar
  48. 48.
    Kawashima K, Fujii T (2000) Extraneuronal cholinergic system in lymphocytes. Pharmacol Ther 86(1):29–48CrossRefPubMedGoogle Scholar
  49. 49.
    Klegeris A, Budd TC, Greenfield SA (1996) Acetylcholinesterase-induced respiratory burst in macrophages: evidence for the involvement of the macrophage mannose-fucose receptor. Biochim Biophys Acta 1289(1):159–168Google Scholar
  50. 50.
    Kobayashi H, O’Briain DS, Hirakawa H, Wang Y, Puri P (1994) A rapid technique of acetylcholinesterase staining. Arch Pathol Lab Med 118(11): 1127–1129Google Scholar
  51. 51.
    Kobayashi H, Yamataka A, Lane GJ, Miyano T (2004) Inflammatory changes secondary to postoperative complications of Hirschsprung’s disease as a cause of histopathologic changes typical of intestinal neuronal dysplasia. J Pediatr Surg 39(2):152–156Google Scholar
  52. 52.
    Koenigsberger C, Chiappa S, Brimijoin S (1997) Neurite differentiation is modulated in neuroblastoma cells engineered for altered acetylcholinesterase expression. J Neurochem 69:1389–1397Google Scholar
  53. 53.
    Kurer MH, Lawson JO, Pambakian H (1986) Suction biopsy in Hirschsprung’s disease. Arch Dis Child 61:(1):83–84Google Scholar
  54. 54.
    Lake BD, Malone MT, Risdon RA (1989) The use of acetylcholinesterase (AChE) in the diagnosis of Hirschsprung’s disease and intestinal neuronal dysplasia. Pediatr Pathol 9:351–354Google Scholar
  55. 55.
    Lake BD, Puri P, Nixon HH, Claireaux AE (1978) Hirschsprung’s disease: an appraisal of histochemically demonstrated acetylcholinesterase activity in suction rectal biopsy specimens as an aid to diagnosis. Arch Pathol Lab Med 102(5):244–247Google Scholar
  56. 56.
    Larsson LT, Malmfors G, Sundler F(1988) Neuropeptide Y, calcitonin gene-related peptide, and galanin in Hirschsprung’s disease: an immunocytochemical study. J Pediatr Surg 23(4):342–345Google Scholar
  57. 57.
    Layer PG, Kaulich S (1991) Cranial nerve growth in birds is preceded by cholinesterase expression during neural crest cell migration and the formation of an HNK-1 scaffold. Cell Tissue Res 265(3):393–407Google Scholar
  58. 58.
    Layer PG, Sporns O (1987) Spatiotemporal relationship of embryonic cholinesterases with cell proliferation in chicken brain and eye. Proc Natl Acad Sci USA 84:284–288Google Scholar
  59. 59.
    Layer PG, Weikert T, Alber R (1993) Cholinesterases regulate neurite growth of chick nerve cells in vitro by means of a non-enzymatic mechanism. Cell Tissue Res 273:219–226Google Scholar
  60. 60.
    Lazar M, Vigny M (1980) Modulation of the distribution of acetylcholinesterase molecular forms in a murine neuroblastoma x sympathetic ganglion cell hybrid cell line. J Neurochem 35:1067–1079Google Scholar
  61. 61.
    Li Y, Liu L, Kang J, Sheng JG, Barger SW, Mrak RE, Griffin WST (2000) Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression. J Neurosci 20(1):149–155Google Scholar
  62. 62.
    Luo Z, Fuentes ME, Taylor P (1994) Regulation of acetylcholinesterase mRNA stability by calcium during differentiation from myoblasts to myotubes. J Biol Chem 269:27216–27223Google Scholar
  63. 63.
    MacKenzie JM, Dixon MF(1987) An immunohistochemical study of the enteric neural plexi in Hirschsprung’s disease. Histopathology 11(10):1055–1066Google Scholar
  64. 64.
    Meier-Ruge W (1968) Das Megacolon: seine Diagnose und Pathophysiolgie. Virchows Arch A Pathol Anat Histopathol 344:67–85Google Scholar
  65. 65.
    Meier-Ruge W, Lutterbeck PM, Herzog B, Morger R, Moser R, Scharli A (1972) Acetylcholinesterase activity in suction biopsies of the rectum in the diagnosis of Hirschsprung’s disease. J Pediatr Surg 7(1):11–17Google Scholar
  66. 66.
    Moore SW (1993) The study of the etiology of post-surgical obstruction in patients with Hirschsprung’s disease. MD thesis, University of Cape TownGoogle Scholar
  67. 67.
    Moore SW, Johnson G, Kaschula ROC (1996) Role of magnesium in suppressing red blood cell acetylcholinesterase in the diagnosis of Hirschsprung’s disease on tissue section. Cell Vision 3(4):324–328Google Scholar
  68. 68.
    Moore SW, Laing D, Kaschula ROC, Cywes S (1994) A histological grading system for the evaluation of co-existing NID with Hirschsprung’s disease. Eur J Pediatr Surg 4:293–297Google Scholar
  69. 69.
    Moore SW, Laing D, Melis J, Cywes S (1993) The effects of prolonged intestinal obstruction on the enteric nervous system (ENS) in rats. J Pediatr Surg 28(9):1196–1199Google Scholar
  70. 70.
    Moore SW, Millar AJW, Cywes S (1994) Long term clinical, manometric and histologic evaluation of obstructive symptoms in the postoperative Hirschsprung’s patient. J Paediatr Surg 29(1):106–111Google Scholar
  71. 71.
    Munakata K, Okabe I, Morita K (1978) Histologic studies of rectocolic aganglionosis and allied diseases. J Pediatr Surg 13(1):67–75Google Scholar
  72. 72.
    Nachlas MM, Tsou KC, de Souse E, Cheng CS, Seligman AM (1957) Cytochemical demonstration of succinic dehydrogenase by the use of a new P-nitrophenyl substituted ditetrazole. J Histochem Cytochem 5:420–436Google Scholar
  73. 73.
    Nemeth L, O’Briain S, Puri P (1999) Whole-mount NADPH-diaphorase histochemistry is a reliable technique for the intraoperative evaluation of extent of aganglionosis. Pediatr Surg Int 15(3–4):195–197Google Scholar
  74. 74.
    Nemeth L, Puri P (2000) The innervation of human bowel mucosa and its alterations in Hirschsprung’s disease using a whole-mount preparation technique. Pediatr Surg Int 16(4):277–281Google Scholar
  75. 75.
    Niemi M, Kouvalainen K, Hjeldt L (1961) Cholinesterases and monoamine oxidase in congenital megacolon. J Path Bact 82:363Google Scholar
  76. 76.
    Noblett H (1969) A rectal suction biopsy tube for use in the diagnosis of Hirschsprung’s disease. J Pediatr Surg 4(4):406–409Google Scholar
  77. 77.
    Okamoto N, Wada Y, Goto M (1997) Hydrocephalus and Hirschsprung’s disease in a patient with a mutation of L1CAM. J Med Genet 34(8):670–671Google Scholar
  78. 78.
    Oue T, Yoneda A, Shima H, Puri P (2000) Muscarinic acetylcholine receptor expression in aganglionic bowel. Pediatr Surg Int 16(4):267–271Google Scholar
  79. 79.
    Paraoanu LE, Layer PG (2004) Mouse acetylcholineserase interacts in yeast with the extracellular matrix component laminin-1beta. FEBS Lett 576(1–2):161–164Google Scholar
  80. 80.
    Parikh DH, Leibl M, Tam PK, Edgar D (1995) Abnormal expression and distribution of nidogen in Hirschsprung’s disease. J Pediatr Surg 30(12):1687–1693Google Scholar
  81. 81.
    Parikh DH, Tam PK, Lloyd DA, Van Velzen D, Edgar DH (1992) Quantitative and qualitative analysis of the extracellular matrix protein, laminin, in Hirschsprung’s disease. J Pediatr Surg 27(8):991–995Google Scholar
  82. 82.
    Patrick WJA, Besley GTN, Smith IL (1980) Histochemical diagnosis of Hirschsprung’s disease and a comparison of the histochemical and biochemical activity of acetylcholinesterase in rectal mucosal biopsies. J Clin Pathol 33:336–343Google Scholar
  83. 83.
    Puri P, Ohshiro K, Wester T (1998) Hirschsprung’s disease: a search for etiology. Semin Pediatr Surg 7(3):140–147Google Scholar
  84. 84.
    Rintala R, Rapola J, Louhimo I (1989) Neuronal intestinal dysplasia. Prog Pediatr Surg 24:186–192Google Scholar
  85. 85.
    Robey SS, Kuhadja F, Yardley JH (1988) Immunoperoxidase stains of ganglion cells and abnormal nerve proliferations in Hirschsprung’s disease. Hum Pathol 19:432–437Google Scholar
  86. 86.
    Rolle U, Piotrowska AP, Puri P (2003) Abnormal vasculature in intestinal neuronal dysplasia. Pediatr Surg Int 19(5):345–348Google Scholar
  87. 87.
    Schofield DE, Devine W, Yunis EJ (1990) Acetylcholinesterase stained suction rectal biosies in the diagnosis of Hirschsprung’s disease. J Pediatr Gastroenterol Nutr 11:221–228Google Scholar
  88. 88.
    Schofield DE, Yunis EJ (1991) Intestinal neuronal dysplasia. J Pediatr Gastroenterol Nutr 12:182–189Google Scholar
  89. 89.
    Soreq H, Patinkin D, Lev-Lehman E, Grifman M, Ginzberg D, Eckstein F, Zakut H (1994) Antisense oligonucleotide inhibition of acetylcholinesterase gene expression induces progenitor cell expansion and suppresses hematopoietic apoptosis ex vivo. Proc Natl Acad Sci USA 91:7907–7911Google Scholar
  90. 90.
    Srivatsan M, Peretz B (1997) Acetylcholinesterase promotes regeneration of neurites in cultured adult neurons of Aplysia. Neuroscience 77:9211–9231Google Scholar
  91. 91.
    Sternfeld M, Ming G, Song H, Sela K, Timberg R, Poo M, Soreq H (1998) Acetylcholinesterase enhances neurite outgrowth and synapse development through alternative contributions of its hydrolytic capacity, core protein and variable C termini. J Neurosci 18:1240–1249Google Scholar
  92. 92.
    Storsteen KA, Kerohan JW, Bargen JA (1953) The myenteric plexus in ulcerative colitis. Surg Gynae Obstets 97:335–343Google Scholar
  93. 93.
    Sun CC, Caniano DA, Hill JL (1987) Intestinal aganglionosis: a histologic and acetylcholinesterase histochemical study. Pediatr Pathol 7:421–435Google Scholar
  94. 94.
    Taguchi T, Tanaka K, Ikeda K (1985) Immunohistochemical study of neuron specific enolase and S-100 protein in Hirschsprung’s disease. Virchows Arch A Pathol Anat Histopathol 405(4):399–409Google Scholar
  95. 95.
    Tam PK, Boyd GP (1991) New insights into peptidergic abnormalities in Hirschsprung’s disease by wholemount immunohistochemistry. J Pediatr Surg 26(5):595–597Google Scholar
  96. 96.
    Toorman J, Bots GThAM, Vio PMA (1977) Acetylcholinesterase activity in rectal mucosa of children with obstipation. Virchows Arch A Pathol Anat Histopathol 376:159–164Google Scholar
  97. 97.
    Touloukian RJ (1975) Acquired aganglionic megacolon in a premature infant: report of a case. Pediatrics 56(3):459–462Google Scholar
  98. 98.
    Van der Staak FHJ (1981) Reliability of the acetylcholinesterase (ACE) reaction in rectal mucosal biopsies for the diagnosis of Hirschsprung’s disease. Z Kinderchir 34:36–42Google Scholar
  99. 99.
    Volpicelli-Daley LA, Duysen EG, Lockridge O, Levey AI (2003) Altered hippocampal muscarinic receptors in acetylcholinesterase-deficient mice. Ann Neurol 53(6):788–796Google Scholar
  100. 100.
    von der Kammer H, Demiralay C, Andresen B, Albrecht C, Mayhaus M, Nitsch RM (2001) Regulation of gene expression by muscarinic acetylcholine receptors. Biochem Soc Symp 67:131–140Google Scholar
  101. 101.
    Wakely PE Jr, McAdams AJ (1984) Acetylcholinesterase histochemistry and the diagnosis of Hirschsprung’s disease: a 3 1/2-year experience. Pediatr Pathol 2(1):35–46Google Scholar
  102. 102.
    Wells FE, Addison GM (1986) Acetylcholinesterase activity in rectal biopsies: an assessment of its diagnostic value in Hirschsprung’s disease. J Pediatr Gastroenterol Nutr 5:912–919Google Scholar
  103. 103.
    Yanai T, Kobayashi H, Yamataka A, Lane GJ, Miyano T, Hayakawa T, Satoh K, Kase Y, Hatano M (2004) Acetylcholine-related bowel dysmotility in homozygous mutant NCX/HOX11L.1-deficient (NCX-/-) mice-evidence that acetylcholine is implicated in causing intestinal neuronal dysplasia. J Pediatr Surg 39(6):927–930Google Scholar
  104. 104.
    Yang L, He HY, Zhang XJ (2002) Increased expression of intranuclear acetylcholinesterase involved in apoptosis of SK-N-SH cells. Neurosci Res 42:261–268Google Scholar
  105. 105.
    Yang X, Fyodorov D, Deneris ES (1995) Transcriptional analysis of acetylcholine receptor alpha 3 gene promoter motifs that bind Sp1 and AP2. J Biol Chem 270:8514–8520Google Scholar
  106. 106.
    Young HM, Anderson RB, Anderson CR (2004) Guidance cues involved in the development of the peripheral autonomic nervous system. Auton Neurosci 112:1–14Google Scholar
  107. 107.
    Zhang HY, Brimijoin S, Tang XC (2003) Apoptosis induced by beta-amyloid 25–35 in acetylcholinesterase-overexpressing neuroblastoma cells. Acta Pharmacol Sin 24(9):853–858Google Scholar
  108. 108.
    Zhang XJ, Yang L, Zhao Q, Caen JP, He HY, Jin QH, Guo LH, Alemany M, Zhang LY,Shi YF (2002) Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell Death Differ 9(8):790–800Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Departments of Paediatric Surgery and Medical BiochemistryUniversity of StellenboschCape TownSouth Africa
  2. 2.Paediatric SurgeryUniversity of StellenboschTygerbergSouth Africa

Personalised recommendations