Skip to main content

Advertisement

Log in

Future changes in the wintertime cyclonic activity over the CORDEX-CORE southern hemisphere domains in a multi-model approach

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Changes in the characteristics of austral winter (June–July–August) synoptic activity in three domains (Africa, Australia and South America) of the extratropical Southern Hemisphere projected with the Regional Climate Model version 4 (RegCM4) are presented. The model is nested in three global climate models (GCMs) from the Coupled Model Intercomparison Project phase 5 (CMIP5) under the Representative Concentration Pathway 8.5. The model grid spacing is 25 km and the simulations cover the period 1970–2100. Synoptic activity is analyzed using both Eulerian and Lagrangian approaches. The Eulerian analysis shows an increase of the synoptic activity south of 40° S in the RegCM4 and GCMs ensembles for the future (2080–2099) compared to the present (1995–2014), but this signal does not necessarily indicate an increase in the cyclone frequency since it includes cyclonic and anticyclonic features. The Lagrangian analysis, however, indicates a decrease in the frequency of cyclones, with a positive tendency towards stronger systems, although the latter is not statistically significant at 95% confidence level. Lifetime, traveled distance and mean speed of the cyclones do not present statistically significant changes in the future climate. On the other hand, a significant increase in both intensity and extension of areas affected by precipitation associated with cyclones is found. As a consequence, there is a statistically significant trend of individual cyclones to produce more rainfall in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adeniyi MO (2019) Sensitivity of two dynamical cores in RegCM47 to the 2012 intense rainfall events over West Africa with focus on Lau. Nigeria. Int J Model Simul 1:1. https://doi.org/10.1080/02286203.2019.1641777

    Article  Google Scholar 

  • Ashley WS, Black AW (2008) Fatalities Associated with Nonconvective High-Wind Events in the United States. J Appl Meteorol Climatol 47(2):717–725. https://doi.org/10.1175/2007JAMC1689.1

    Article  Google Scholar 

  • Bader J, Mesquita MDS, Hodges KI, Keenlyside N, Osterhus S, Miles M (2011) A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: Observations and projected changes. Atmos Res 101(4):809–834. https://doi.org/10.1016/j.atmosres.2011.04.007

    Article  Google Scholar 

  • Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevag A, Seland O, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjansson JE (2012) The Norwegian Earth System Model, NorESM1-M –Part 1: Description and basic evaluation. Geosci Model Dev Discuss 5(3):2843–2931. https://doi.org/10.5194/gmdd-5-2843-2012

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Keenlyside N (2009) Will extratropical storms intensify in a warmer climate? J Clim 22(9):2276–2301. https://doi.org/10.1175/2008JCLI2678.1

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19(15):3518–3543. https://doi.org/10.1175/JCLI3815.1

    Article  Google Scholar 

  • Bitencourt DP, Manoel G, Acevedo OC, Fuentes MV, Muza MN, Rodrigues ML, Leal-Quadro MF (2011) Relating winds along the Southern Brazilian coast to extratropical cyclones. Meteorol Appl 18(2):223–229. https://doi.org/10.1002/met.232

    Article  Google Scholar 

  • Blackmon ML (1976) Climatological spectral study of the 500 mb geopotential height of the northern hemisphere. J Atmos Sci 33(8):1607–1623. https://doi.org/10.1175/15200469(1976)033<1607:ACSSOT>2.0.CO;2

    Article  Google Scholar 

  • Blázquez J, Solman SA (2018) Relationship between projected changes in precipitation and fronts in the austral winter of the Southern Hemisphere from a suite of CMIP5 models. Clim Dyn. https://doi.org/10.1007/s00382-018-4482-y

    Article  Google Scholar 

  • Booth JF, Naud CM, Del Genio AD (2013) Diagnosing warm frontal cloud formation in a GCM: A novel approach using conditional subsetting. J Climate 26:5827–5845. https://doi.org/10.1175/JCLI-D-12-00637.1

    Article  Google Scholar 

  • Brasiliense CS, Dereczynski CP, Satyamurty P, Chou SC, da Silva Santos VR, Calado RN (2018) Synoptic analysis of an intense rainfall event in Paraíba do Sul river basin in southeast Brazil. Meteorol Appl 25(1):66–77. https://doi.org/10.1002/met.1670

    Article  Google Scholar 

  • Catto JL, Ackerley D, Booth JF, Champion AJ, Colle BA, Pfahl S, Pinto JG, Quinting JF, Seiler C (2019) The future of midlatitude cyclones. Curr Clim Chang Rep. https://doi.org/10.1007/s40641-019-00149-4

    Article  Google Scholar 

  • Catto JL, Madonna E, Joos H, Rudeva I, Simmonds I (2015) Global relationship between fronts and warm conveyor belts and the impact on extreme precipitation. J Clim 28(21):8411–8429. https://doi.org/10.1175/JCLI-D-15-0171.1

    Article  Google Scholar 

  • Chang EKM, Ma C-G, Zheng C, Yau AMW (2016) Observed and projected decrease in Northern Hemisphere extratropical cyclone activity in summer and its impacts on maximum temperature. Geophys Res Lett 43(5):2200–2208. https://doi.org/10.1002/2016GL068172

    Article  Google Scholar 

  • Chang EKM (2017) Projected significant increase in the number of extreme extratropical cyclones in the southern hemisphere. J Clim 30:4915–4935

    Article  Google Scholar 

  • Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Hinton T, Jones CD, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Totterdell I, Woodward S, Reichler T, Kim J, Halloran P (2008) Evaluation of the HadGEM2 model. Hadley Centre Technical Note HCTN 74, Met Office Hadley Centre, Exeter, U.K.,https://www.metoffice.gov.uk/learning/library/publications/science/climate-science

  • da Rocha RP, Sugahara S, Da Silveira RB (2004) Sea waves generated by extratropical cyclones in the South Atlantic Ocean: Hindcast and validation against altimeter data. Weather Forecast 19(2):398–410. https://doi.org/10.1175/1520-0434(2004)019<0398:SWGBEC>2.0.CO;2

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delson C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, Rosnay P, Tavolatto C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Dowdy AJ, Mills GA, Timbal B, Wang Y (2013) Changes in the Risk of Extratropical Cyclones in Eastern Australia. J Clim 26(4):1403–1417. https://doi.org/10.1175/JCLI-D-12-00192.1

    Article  Google Scholar 

  • Dowdy AJ, Pepler A, Di Luca A, Cavicchia L, Mills G, Evans JP, Louis S, McInnes K, Walsh K (2019) Review of Australian east coast low pressure systems and associated extremes. Clim Dyn. https://doi.org/10.1007/s00382-019-04836-8

    Article  Google Scholar 

  • Elguindi N, Giorgi F, Turuncoglu UU (2014) Assessment of CMIP5 global model simulations over the sub-set of CORDEX domains used in the Phase I CREMA Experiment. Clim Change 125(1):7–21. https://doi.org/10.1007/S10584-013-0935-9

    Article  Google Scholar 

  • Fasullo JT, Trenberth KE (2008) The Annual Cycle of the Energy Budget. Part II: Meridional Structures and Poleward Transports. J Clim 21(10):2313–2325. doi:10.1175/2007JCLI1936.1

  • Feser F, Barcikowska M, Krueger O, Schenk F, Weisse R, Xia L (2015) Storminess over the North Atlantic and northwestern Europe: a review. Q J R Meteorol Soc 141(687):350–382. https://doi.org/10.1002/qj.2364

    Article  Google Scholar 

  • Flaounas E, Kelemen FD, Wernli H, Gaetner MG, Reale M, Sanchez-Gomez E, Lionello P, Calmanti S, Podracanin Z, Somot S, Akhtar N, Romera R, Conte D (2018) Assessment of an ensemble of ocean–atmosphere coupled and uncoupled regional climate models to reproduce the climatology of Mediterranean cyclones. Clim Dyn 51:1023–1040

    Article  Google Scholar 

  • Francis JA, Francis VSJ (2012) Evidence linking Arctic amplification to extreme weather. Geophys Res Lett 39:1–6. https://doi.org/10.1029/2012GL051000

    Article  Google Scholar 

  • Gan MA, Rao VB (1991) Surface cyclogenesis over South America. Mon Weather Rev 119(5):1293–1302

    Article  Google Scholar 

  • Geng Q, Sugi M (2003) Possible Change of Extratropical Cyclone Activity due to Enhanced Greenhouse Gases and Sulfate Aerosols—Study with a High-Resolution AGCM. J Clim 16(13):2262–2274. https://doi.org/10.1175/1520-0442(2003)16<2262:PCOECA>2.0.CO;2

    Article  Google Scholar 

  • Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg H, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six K, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners K, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5(3):572–597

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Guttler I, Obrien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. https://doi.org/10.3354/cr01018

    Article  Google Scholar 

  • Giorgi F, Im ES, Coppola E, Diffenbaugh NS, Gao XJ, Mariotti L, Shi Y (2011) Higher Hydroclimatic Intensity with Global Warming. J Clim 24:5309–5324

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX Framework. World Meteorological Organization (WMO) Bull 58(3):175

  • Giorgi F, Torma C, Coppola E, Ban N, Schar C, Somot S (2016) Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. Nature Geosci 9:584–589

    Article  Google Scholar 

  • Giorgi F, Raffaele F, Coppola E (2019) The response of precipitation characteristics to global warming from climate projections. Earth Syst Dynam 10:73–89. https://doi.org/10.5194/esd-10-73-2019

    Article  Google Scholar 

  • Gramcianinov CB, ·Hodges KI, Camargo R (2019) The properties and genesis environments of South Atlantic cyclones. Clim Dyn. doi:10.1007/s00382-019-04778-1

  • Grieger J, Leckebusch GC, Donat MG, Schuster M, Ulbrich U (2014) Southern Hemisphere winter cyclone activity under recent and future climate conditions in multi-model AOGCM simulations. Int J Climatol 34(12):3400–3416. https://doi.org/10.1002/joc.3917

    Article  Google Scholar 

  • Gutowski WJ Jr, Giorgi F, Timbal B, Frigon A, Jacob D, Kang H-S, Raghavan K, Lee B, Lennard C, Nikulin G, O'Rourke E, Rixen M, Solman S, Stephenson T, Tangang F (2016) WCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6. Geosci Model Dev 9:4087–4095. https://doi.org/10.5194/gmd-9-4087-2016

    Article  Google Scholar 

  • Hawcroft MK, Shaffrey LC, Hodges KI, Dacre HF (2012) How much Northern Hemisphere precipitation is associated with extratropical cyclones?. Geophys Res, Lett, p 39

    Google Scholar 

  • Hawcroft M, Walsh E, Hodges K, Zappa G. (2018) Significantly increased extreme precipitation expected in Europe and North America from extratropical cyclones. Environ Res Lett. 13(12)

  • Holtslag AAM, De Bruijn EIF, Pan H-L (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575

    Article  Google Scholar 

  • Holtslag AAM, Boville BA (1993) Local versus nonlocal boundary-layer diffusion in a global climate model. J Clim 6:1825–1842

    Article  Google Scholar 

  • Hoskins BJ, Hodges KI (2019) The Annual Cycle of Northern Hemisphere Storm Tracks. Part II: Regional Detail J Clim 32(6):1761–1775. https://doi.org/10.1175/JCLI-D-17-0871.1

    Article  Google Scholar 

  • Hoskins BJ, Hodges KI (2005) A New Perspective on Southern Hemisphere Storm Tracks. J Clim 18(20):4108–4129

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Morrissey MM, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeorol 2(1):36–50. https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2

    Article  Google Scholar 

  • Huntingford C, Marsh T, Scaife A et al (2014) Potential influences on the United Kingdom's floods of winter 2013/14. Nature Clim Change 4:769–777

    Article  Google Scholar 

  • IPCC (2013) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (Eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York, NY: Cambridge University Press, p. 1535. doi: 10.1017/CBO9781107415324

  • Jacob D, Teichmann C, Remedio AC, Buelow K, Remke T, Kriegsmann A, Lierhammer L, Rechid D, Sieck K, Buntemeyer L, Weber T, Hoffmann P, Langendijk G, Coppola E, Giorgi F, Ciarlo J, Raffaele F, Giuliani G, Xuejie G, Sines TR, Torres A, Das S, di Sante F, Pichelli E, Glazer R, Ashfaq M, Bukovsky M, Im ES. (2020) Assessing mean climate change signals in the global CORDEX-CORE ensemble. Clim Dyn, special issue.

  • Ji F, Pepler AS, Browning S, Evans JP, Luca AD (2018) Trends and low frequency variability of east coast lows in the twentieth century. J South Hemis Earth Syst Sci. https://doi.org/10.22499/3.6801.001

    Article  Google Scholar 

  • Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47(23):2784–2802. https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2

    Article  Google Scholar 

  • Kiehl J, Hack J, Bonan G, Boville B, Breigleb B, Williamson D, Rasch P (1996) Description of the NCAR Community Climate Model (CCM3). National Center for Atmospheric Research Tech Note NCAR/TN-420+STR, NCAR, Boulder, CO

  • Koné B, Diedhiou A, Touré NE, Sylla MB, Giorgi F, Anquetin S, Bamba A, Diawara A (2018) Kobea AT (2018) Sensitivity study of the regional climate model RegCM4 to different convective schemes over West Africa. Earth Syst Dyn 9:1261–1278. https://doi.org/10.5194/esd-9-1261-2018

    Article  Google Scholar 

  • Krüger LF, da Rocha RP, Reboita MS, Ambrizzi T (2012) RegCM3 nested in HadAM3 scenarios A2 and B2: Projected changes in extratropical cyclogenesis, temperature and precipitation over the South Atlantic Ocean. Clim Change 113(3–4):599–621. https://doi.org/10.1007/s10584-011-0374-4

    Article  Google Scholar 

  • Kodama C, Iwasaki T (2009) Influence of the SST Rise on Baroclinic Instability Wave Activity under an Aquaplanet Condition. J Atmos Sci 66(8):2272–2287. https://doi.org/10.1175/2009JAS2964.1

    Article  Google Scholar 

  • Kodama C, Stevens B, Mauritsen T, Seiki T, Satoh M (2019) A new perspective for future precipitation change from intense extratropical cyclones. Geophys Res Lett. https://doi.org/10.1029/2019GL084001

    Article  Google Scholar 

  • Lionello P, Cogo S, Galati MB, Sanna A (2008) The Mediterranean surface wave climate inferred from future scenario simulations. Glob Planet Change 63(2–3):152–162. https://doi.org/10.1016/j.gloplacha.2008.03.004

    Article  Google Scholar 

  • Lionello P, Dalan F, Elvini E (2002) Cyclones in the Mediterranean region: The present and the doubled CO2 climate scenarios. Clim Res 22(2):147–159. https://doi.org/10.3354/cr022147

    Article  Google Scholar 

  • Lionello P, Giorgi F (2007) Winter precipitation and cyclones in the Mediterranean region: future climate scenarios in a regional simulation. Adv Geosci 12:153–158

    Article  Google Scholar 

  • Lionello P, Trigo IF, Gil V, Liberato MLR, Nissen KM, Pinto JG, Raible CC, Reale M, Tanzarella A, Trigo RM, Ulbrich S, Ulbrich U (2016) Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria. Tellus A: Dynamic Meteorology and Oceanography 68:1. https://doi.org/10.3402/tellusa.v68.29391

    Article  Google Scholar 

  • Lionello P, Conte D, Reale M (2019) The effect of cyclones crossing the Mediterranean region on sea level anomalies on the Mediterranean Sea coast. Nat Hazards Earth Syst Sci 19:1541–1564

    Article  Google Scholar 

  • Llopart M, Reboita MS, da Rocha RP (2020) Assessment of multi-model climate projections of water resources over South America CORDEX domain. Clim Dyn. 55:99–116. https://doi.org/10.1007/s00382-019-04990-z

    Article  Google Scholar 

  • Lu J, Cai M (2009) Seasonality of polar surface warming amplification in climate simulations. Geophys Res Lett 36(16):L16704. https://doi.org/10.1029/2009GL040133

    Article  Google Scholar 

  • Mahlalela PT, Blamey RC, Reason CJC (2019) Mechanisms behind early winter rainfall variability in the southwestern Cape. S Afr Clim Dyn 53(1–2):21–39. https://doi.org/10.1007/s00382-018-4571-y

    Article  Google Scholar 

  • Mbienda AJK, Tchawoua C, Vondou DA, Choumbou VP, Kenfack C, Sadem CK, Dey S (2016) Impact of anthropogenic aerosols on climate variability over Central Africa by using a regional climate model. Int J Climatol 37(1):249–267

    Article  Google Scholar 

  • Michaelis AC, Willison J, Lackmann GM, Robinson WA (2017) Changes in winter North Atlantic extratropical cyclones in high-resolution regional pseudo-global warming simulations. J Clim 30(17):6905–6925. https://doi.org/10.1175/JCLI-D-16-0697.1

    Article  Google Scholar 

  • Mizuta R, Matsueda M, Endo H, Yukimoto S (2011) Future change in extratropical cyclones associated with change in the upper troposphere. J Clim 24(24):6456–6470. https://doi.org/10.1175/2011JCLI3969.1

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. https://doi.org/10.1038/nature08823

    Article  Google Scholar 

  • Murray RJ, Simmonds I (1991) A numerical scheme for tracking cyclone centres from digital data: Part I: development and operation of the scheme. Aust Meteorol Mag 39(3):167–180

    Google Scholar 

  • Neu U, Akperov MG, Bellenbaum N, Benestad R, Blender R, Caballero R, Cocozza A, Dacre HF, Feng Y, Fraedrich K, Grieger J, Gulev S, Hanley J, Hewson T, Inatsu M, Keay K, Kew SF, Kindem I, Leckebusch GC, Liberato MLR, Lionello P, Mokhov II, Pinto JG, Raible CC, Reale M, Rudeva I, Schuster M, Simmonds I, Sinclair M, Sprenger M, Tilinina ND, Trigo IF, Ulbrich S, Ulbrich U, Wang XL, Wernli H (2013) IMILAST: a community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull Am Meteorol Soc 94(4):529–547. https://doi.org/10.1175/BAMS-D-11-00154.1

    Article  Google Scholar 

  • Nissen KM, Leckebusch GC, Pinto JG, Renggli D, Ulbrich S, Ulbrich U (2010) Cyclones causing wind storms in the Mediterranean: characteristics, trends and links to large-scale patterns. Nat. Hazards Earth Syst Sci 10:1379–1391. https://doi.org/10.5194/nhess-10-1379-2010

    Article  Google Scholar 

  • Nuñez M, Blázquez J (2014) Climate change in La Plata basin as seen by a high-resolution global model. Atmos Clim Sci 4:272–289

    Google Scholar 

  • Oleson KW, Lawrence DM, Bonan GB, Drewniak B, Huang M, Koven CD, Levis S, Li F, Riley WJ, Subin ZM, Swenson SC, Thornton PE, Bozbiyik A, Fisher R, Kluzek E, Lamarque J-F, Lawrence PJ, Leung LR, Lipscomb W, Muszala S, Ricciuto DM, Sacks W, Sun Y, Tang J, Yang Z-L (2013) Technical Description of version 4.5 of the Community Land Model (CLM), Tech. rep., National Center for Atmospheric Research. https://doi.org/10.5065/D6RR1W7M

  • Ogwang BA, Chen H, Li X et al (2016) Evaluation of the capability of RegCM4.0 in simulating East African climate. Theor Appl Climatol 124:303–313. https://doi.org/10.1007/s00704-015-1420-3

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Rauscher SA, Francisco R, Zakey A, Winter J, Moetasim A, Syed FS, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, da Rocha RP, Sloan LC, Steiner AL (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409

    Article  Google Scholar 

  • Pal JS, Small E, Eltahir E (2000) Simulation of regional-scale water and energy budgets:representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105:29579–29594

    Article  Google Scholar 

  • Peixoto JP, Oort AH, Covey C, Taylor K (1992) Physics of climate. Phys Today 45(8):67–67. https://doi.org/10.1063/1.2809772

    Article  Google Scholar 

  • Pepler AS, Di Luca A, Ji F, Alexander LV, Evans JP, Sherwood SC (2016) Projected changes in east Australian midlatitude cyclones during the 21st century. Geophys Res Lett 43(1):334–340. https://doi.org/10.1002/2015GL067267

    Article  Google Scholar 

  • Pepler A, Dowdy A, Hope P (2018) A global climatology of surface anticyclones, their variability, associated drivers and long-term trends. Clim Dyn. https://doi.org/10.1007/s00382-018-4451-5

    Article  Google Scholar 

  • Pezza AB, Rashid HA, Simmonds I (2012) Climate links and recent extremes in Antarctic sea ice, high-latitude cyclones, southern annular mode and ENSO. Clim Dyn 38:57–73

    Article  Google Scholar 

  • Pitt M (2008) Learning Lessons from the 2007 Floods. Cabinet Office, London

    Google Scholar 

  • Pfahl S, Wernli H (2012) Quantifying the relevance of cyclones for precipitation extremes. J Clim 25:6770–6780

    Article  Google Scholar 

  • Reale M, Lionello P (2013) Synoptic climatology of winter intense precipitation events along the Mediterranean coasts. Nat Hazards Earth Syst Sci 13(7):1707–1722. https://doi.org/10.5194/nhess-13-1707-2013

    Article  Google Scholar 

  • Reale M, Liberato MLR, Lionello P, Pinto JG, Salon S, Ulbrich S (2019) A global climatology of explosive cyclones using a multi-tracking approach. Tellus A: Dyn Meteorol Oceanogr 71(1):1–19. https://doi.org/10.1080/16000870.2019.1611340

    Article  Google Scholar 

  • Reboita MS, da Rocha RP, Ambrizzi T, Sugahara S (2010) South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Clim Dyn 35(7):1331–1347. https://doi.org/10.1007/s00382-009-0668-7

    Article  Google Scholar 

  • Reboita MS, da Rocha RP, Ambrizzi T (2012) Dynamic and climatological features of cyclonic developments over southwestern South Atlantic Ocean. Horizons Earth Sci Res 6:135–160

    Google Scholar 

  • Reboita MS, da Rocha RP, Dias CG, Ynoue RY (2014) Climate projections for South America: RegCM3 driven by HadCM3 and ECHAM5. Adv Meteorol. Article ID 376738, 17

  • Reboita MS, da Rocha RP, Ambrizzi T, Gouveia CD (2015) Trend and teleconnection patterns in the climatology of extratropical cyclones over the Southern Hemisphere. Clim Dyn 45(7–8):1929–1944. https://doi.org/10.1007/s00382-014-2447-3

    Article  Google Scholar 

  • Reboita MS, da Rocha RP, de Souza MR, Llopart M (2018) Extratropical cyclones over the southwestern South Atlantic Ocean: HadGEM2-ES and RegCM4 projections. Int J Climatol 38(6):2866–2879. https://doi.org/10.1002/joc.5468

    Article  Google Scholar 

  • Reboita MS, da Rocha RP, Oliveira DM (2019a) Key features and adverse weather of the named subtropical cyclones over the Southwestern South Atlantic. Atmosphere 10(1):6. https://doi.org/10.3390/atmos10010006

    Article  Google Scholar 

  • Reboita MS, Ambrizzi T, Silva BA, Pinheiro RF, da Rocha RP (2019b) The South Atlantic subtropical anticyclone: present and future climate. Front Earth Sci 7:8. https://doi.org/10.3389/feart.2019.00008

    Article  Google Scholar 

  • Reichler T (2009) Changes in the atmospheric circulation as indicator of climate change. Clim Change. https://doi.org/10.1016/B978-0-444-53301-2.00007-5

    Article  Google Scholar 

  • Rivière G, Arbogast P, Lapeyre G, Maynard K (2012) A potential vorticity perspective on the motion of a mid-latitude winter storm. Geophys Res Lett 39:L12808. https://doi.org/10.1029/2012GL052440

    Article  Google Scholar 

  • Shaw TA, Baldwin M, Barnes EA, Caballero R, Garfinkel CI, Hwang Y-T, Li C, O’Gorman PA, Rivière G, Ir S, Voigt A (2016) Storm track processes and the opposing influences of climate 785 change. Nat Geosci 9:656–664

    Article  Google Scholar 

  • Seth A, Rojas M, Rauscher SA (2010) CMIP3 projected changes in the annual cycle of the South American Monsoon. Clim Change 98:331–357. https://doi.org/10.1007/s10584-009-9736-6

    Article  Google Scholar 

  • Sinclair MR (1994) An objective cyclone climatology for the Southern Hemisphere. Mon Weather Rev 122(10):2239–2265. https://doi.org/10.1175/1520-0493(1994)122<2239:AOCCFT>2.0.CO;2

    Article  Google Scholar 

  • Sines T, Coppola E, Giorgi F, Sitz L (2018a) South America CORDEX project using RegCM. Available in: https://indico.ictp.it/event/8313/session/2/contribution/9/material/slides/0.pdf

  • Sines T, Coppola E, Giorgi F (2018b) North America and Australasia CORDEX projects using RegCM. Available in: https://indico.ictp.it/event/8313/session/8/contribution/40/material/slides/0.pdf

  • Song R, Gao X, Zhang H, Moise A (2008) 20 km resolution regional climate model experiments over Australia: experimental design and simulations of current climate. Aust Meteorol Mag 57(3):175–193

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800. https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2

    Article  Google Scholar 

  • Torma C, Giorgi F (2020) On the evidence of orographical modulation of regional fine scale precipitation change signals: The Carpathians. Atmos Sci Lett 2020:e967. https://doi.org/10.1002/asl.967

    Article  Google Scholar 

  • Torma CS, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain: precipitation over the Alps. J Geophys Res Atmos 120:3957–3972. https://doi.org/10.1002/2014JD022781

    Article  Google Scholar 

  • Ulbrich U, Leckebusch GC, Pinto JG (2009) Extra-tropical cyclones in the present and future climate: a review. Theor Appl Climatol 96(1–2):117–131. https://doi.org/10.1007/s00704-008-0083-8

    Article  Google Scholar 

  • Ulbrich U, Leckebusch GC, Grieger J, Schuster M, Akperov M, Bardin MY, Feng Y, Gulev S, Inatsu M, Keay K, Kew SF, Liberato MLR, Lionello P, Mokhov II, Neu U, Pinto JG, Raible CC, Reale M, Rudeva I, Simmonds I, Tilinina ND, Trigo IF, Ulbrich S, Wang XL, Wernli H, Team TIMILAST (2013) Are Greenhouse Gas Signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm? Meteor Z 22:61–68. https://doi.org/10.1127/0941-2948/2013/0420

    Article  Google Scholar 

  • Vera CS, Vigliarolo PK, Berbery EH (2002) Cold season synoptic-scale waves over subtropical South America. Mon Weather Rev 130(3):684–699. https://doi.org/10.1175/1520-0493(2002)130<0684:CSSSWO>2.0.CO;2

    Article  Google Scholar 

  • Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32(18):1. https://doi.org/10.1029/2005GL023684

    Article  Google Scholar 

  • Zappa G, Shaffrey LC, Hodges KI (2013) The Ability of CMIP5 Models to Simulate North Atlantic Extratropical Cyclones. J Clim 26(15):5379–5396. https://doi.org/10.1175/JCLI-D-12-00501.1

    Article  Google Scholar 

  • Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim. https://doi.org/10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank CMIP5, ECMWF and GPCP for the data used in this study and ICTP and the National Council for Scientific and Technological Development (CNPq—Brazil) for financial support. M. Reale has been supported in this work by OGS and CINECA under HPC-TRES award number 2015-07 and by the project FAIRSEA (Fisheries in the Adriatic Region—a Shared Ecosystem. Approach) funded by the 2014–2020 Interreg V‐A Italy—Croatia CBC Programme (Standard project ID 10046951). Special thanks for Talina Sines and Francesca Raffaele, who ran the projections from the domains used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Simões Reboita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reboita, M.S., Reale, M., da Rocha, R.P. et al. Future changes in the wintertime cyclonic activity over the CORDEX-CORE southern hemisphere domains in a multi-model approach. Clim Dyn 57, 1533–1549 (2021). https://doi.org/10.1007/s00382-020-05317-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05317-z

Keywords

Navigation