Skip to main content
Log in

Effect of winter-to-summer El Niño transitions on tropical cyclone activity in the North Atlantic

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

El Niño-Southern Oscillation (ENSO) is known to significantly modulate Atlantic tropical cyclone (TC) activity. In this paper, we separate El Niño events into El Niño resurgence (ELR) and La Niña-transition-El Niño (LAT) events according to the warm or cold ENSO phase in the preceding winter. Different influences of the two types of El Niño events on North Atlantic TC activity are explored during the hurricane season of June–November. The average number of TCs is more, with shorter average duration and slightly larger intensity during ELR events than during LAT events. There are more TCs passing through and making landfall at the Gulf of Mexico, Caribbean Sea during ELR events, indicating that TCs may have a greater impact on coastal cities of Gulf of Mexico and Caribbean Sea during ELR events than LAT events. Composite analysis reveals that thermodynamic factors such as relative humidity (RH), sea surface temperature and tropical cyclone heat potential are mainly responsible for the TC activity difference between ELR and LAT events. Genesis potential index diagnosis shows that the RH and potential intensity are the dominant factors that influence TC genesis in the MDR during ELR events. During LAT events, the relative vorticity, vertical wind shear and RH over Cape Verde are favorable for TC genesis. In summary, the preceding winter ENSO phases associated with ELR and LAT events lead to opposite changes of environmental factors, and thus induce different TC activities in ELR and LAT events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. https://doi.org/10.1029/2006JC003798

    Article  Google Scholar 

  • Balaguru K, Leung LR, Lu J, Foltz GR (2016) A meridional dipole in premonsoon Bay of Bengal tropical cyclone activity induced by ENSO. J Geophys Res Atmos 121:6954–6968. https://doi.org/10.1002/2016jd024936

    Article  Google Scholar 

  • Bell GD, Halpert MS (2000) Climate assessment for 1999. Bull Am Meteorol Soc 81:S1–S50

    Article  Google Scholar 

  • Bister M, Emanuel KA (2002) Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J Geophys Res Atmos 107:4801. https://doi.org/10.1029/2001jd000776

    Article  Google Scholar 

  • Bove MC, Elsner JB, Landsea CW, Niu XF, O’Brien JJ (1998) Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull Am Meteorol Soc 79:2477–2482

    Article  Google Scholar 

  • Camargo SJ, Emanuel KA, Sobel AH (2007) Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J Clim 20:4819–4834

    Article  Google Scholar 

  • Camargo SJ, Wheeler MC, Sobel AH (2009) Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J Atmos Sci 66:3061–3074. https://doi.org/10.1175/2009jas3101.1

    Article  Google Scholar 

  • Carton JA, Giese B (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017

    Article  Google Scholar 

  • Chu PS (2004) ENSO and tropical cyclone activity. In: Murnane RJ, Liu K-B (eds) Hurricanes and typhoons, past, present and future. Columbia University Press, New York, pp 297–332

    Google Scholar 

  • Curtis S, Hastenrath S (1995) Forcing of anomalous sea surface temperature evolution in the tropical Atlantic during Pacific warm events. J Geophys Res 100:15835–15847

    Article  Google Scholar 

  • Czaja A, Van der Vaart P, Marshall J (2002) A diagnostic study of the role of remote forcing in tropical Atlantic variability. J Clim 15:3280–3290. https://doi.org/10.1175/1520-0442(2002)015,3280:ADSOTR.2.0.CO;2

    Article  Google Scholar 

  • Elsner JB, Kara AB (1999) Hurricanes of the North Atlantic: climate and society. Oxford University Press, Oxford

    Google Scholar 

  • Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436(7051):686–688

    Article  Google Scholar 

  • Emanuel K, Kerry A (1999) Thermodynamic control of hurricane intensity. Nature 401(6754):665–669. https://doi.org/10.1038/44326

    Article  Google Scholar 

  • Emanuel K, Nolan DS (2004) Tropical cyclone activity and the global climate system. In: Proceedings of 26th AMS conference on hurricanes and tropical meteorology, vol 10, pp 240–241

  • Emanuel K, DesAutels C, Holloway C, Korty R (2004) Environmental control of tropical cyclone intensity. J Atmos Sci 61:843–858

    Article  Google Scholar 

  • Enfield DB, Mayer DA (1997) Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J Geophys Res 102:929–945

    Article  Google Scholar 

  • Free M, Bister M, Emanuel K (2004) Potential intensity of tropical cyclones: comparison of results from radiosonde and reanalysis data. J Clim 17(8):1722–1727

    Article  Google Scholar 

  • García-Serrano JC, Cassou HD, Giannini A, Doblas- Reyes FJ (2017) Revisiting the ENSO teleconnection to the tropical North Atlantic. J Clim 30:6945–6957. https://doi.org/10.1175/JCLI-D-16-0641.1

    Article  Google Scholar 

  • Gilford DM, Solomon S, Emanuel KA (2019) Seasonal cycles of along-track tropical cyclone maximum intensity. Mon Weather Rev 147:2417–2432. https://doi.org/10.1175/MWR-D-19-0021.1

    Article  Google Scholar 

  • Girishkumar MS, Suprit K, Vishnu S, Prakash VPT, Ravichandran M (2015) The role of ENSO and MJO on rapid intensification of tropical cyclones in the Bay of Bengal during October–December. Theor Appl Climatol 120(3–4):797–810

    Article  Google Scholar 

  • Goldenberg SB, Shapiro LJ (1996) Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J Clim 9:1169–1187

    Article  Google Scholar 

  • Gray WM (1984) Atlantic seasonal hurricane frequency. Part 1: El Niño and 30mb quasi-biennial oscillation influences. Mon Weather Rev 112:1649–1668

    Article  Google Scholar 

  • Ha KJ, Yoon SJ, Yun KS, Kug JS, Jang YS, Chan JCL (2012) Dependency of typhoon intensity and genesis locations on El Niño phase and SST shift over the western North Pacific. Theor Appl Climatol 109:383–395. https://doi.org/10.1007/s00704-012-0588-z

    Article  Google Scholar 

  • Handoh IC, Matthews AJ, Bigg GR, Stevens DP (2006) Interannual variability of the tropical Atlantic independent of and associated with ENSO: part I. The north tropical Atlantic. Int J Climatol 26:1937–1956. https://doi.org/10.1002/joc.1343

    Article  Google Scholar 

  • Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Weather Rev 109:813–829

    Article  Google Scholar 

  • Huang B, Banzon VF, Freeman E, Lawrimore J, Liu W, Peterson TC, Smith TM, Thorne PW, Woodruff SD, Zhang HM (2015) Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J Clim 28:911–930

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bull Am Meteorol Soc 77:437–471

    Google Scholar 

  • Kim HM, Webster PJ, Curry JA (2009) Impact of shifting patterns of Pacific Ocean warming on North Atlantic TCs. Science 325:77–80

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Article  Google Scholar 

  • Klotzbach PJ (2010) The Influence of El Niño-Southern Oscillation and the Atlantic multidecadal oscillation on Caribbean tropical cyclone activity. J Clim 24:721–731

    Article  Google Scholar 

  • Kossin JP, Camargo SJ, Sitkowski M (2010) Climate modulation of North Atlantic hurricane tracks. J Clim 23(11):3057–3076

    Article  Google Scholar 

  • Krishnamurthy L, Vecchi GA, Msadek R, Murakami H, Wittenberg A, Fr Zeng (2015) Impact of Strong ENSO on regional cyclone activity in a high-resolution climate model in the North Pacific and North Atlantic Oceans. J Clim 29(7):2375–2394. https://doi.org/10.1175/JCLI-D-15-0468.1

    Article  Google Scholar 

  • Landsea CW, Franklin JL (2013) Atlantic hurricane database uncertainty and presentation of a new database format. Mon Weather Rev 141:3576–3592

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705

    Article  Google Scholar 

  • Lee SK, Enfield DB, Wang C (2008) Why do some El Niños have no impact on tropical North Atlantic SST? Geophys Res Lett 35:L16705. https://doi.org/10.1029/2008GL034734

    Article  Google Scholar 

  • Lee SK, Mapes BE, Wang CZ, Enfield DB, Weaver SJ (2014) Springtime ENSO phase evolution and its relation to rainfall in the continental U.S. Geophys Res Lett 41:1673–1680

    Article  Google Scholar 

  • Leipper DF, Volgenau D (1972) Hurricane heat potential of the Gulf of Mexico. J Phys Oceanogr 2:218–224

    Article  Google Scholar 

  • Li RCY, Zhou W (2012) Changes in Western Pacific TCs associated with the El Niño-Southern Oscillation Cycle. J Clim 25:5864–5878

    Article  Google Scholar 

  • Li Z, Yu W, Li T, Murty V, Tangang F (2013) Bimodal character of cyclone climatology in the Bay of Bengal modulated by monsoon seasonal cycle. J Clim 26(3):1033–1046. https://doi.org/10.1175/jcli-d-11-00627.1

    Article  Google Scholar 

  • Lin II, Wu CC, Pun IF, Ko DS (2008) Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: ocean features and the category 5 typhoons’ intensification. Mon Weather Rev 136:3288–3306. https://doi.org/10.1175/2008MWR2277.1

    Article  Google Scholar 

  • Lin II, Chen CH, Pun IF, Liu WT, Wu CC (2009a) Warm ocean anomaly, air sea fluxes, and the rapid intensification of Tropical Cyclone Nargis (2008). Geophys Res Lett 36:L03817. https://doi.org/10.1029/2008GL035815

    Article  Google Scholar 

  • Lin II, Pun IF, Wu CC (2009b) Upper ocean thermal structure and the western North Pacific category-5 typhoons. Part II: dependence on translation speed. Mon Weather Rev 137:3744–3757. https://doi.org/10.1175/2009MWR2713.1

    Article  Google Scholar 

  • Pielke RA Jr, Landsea CW (1998) Normalized hurricane damages in the United States: 1925–1995. Weather Forecast 13:621–631

    Article  Google Scholar 

  • Pun IF, Lin II, Wu CR, Ko DS, Liu WT (2007) Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon intensity forecast. IEEE Trans Geosci Remote Sens 45:1616–1630

    Article  Google Scholar 

  • Shapiro J (1987) Month to month variability of the Atlantic tropical circulation and its relationship to tropical storm formation. Mon Weather Rev 115:2598–2614

    Article  Google Scholar 

  • Smith SR, Brolley J, O’Brien JJ, Tartaglione CA (2007) ENSO’s impact on regional U.S. hurricane activity. J Clim 20:1404–1414

    Article  Google Scholar 

  • Tang BH, Neelin JD (2004) ENSO influence on Atlantic hurricane via tropospheric warming. Geophys Res Lett 31:L24204

    Article  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812

    Article  Google Scholar 

  • Wang C (2002) ENSO and atmospheric circulation cells. CLIVAR Exch 7:9–11

    Google Scholar 

  • Wang B, Chan JCL (2002) How strong ENSO events affect tropical storm activity over the western North Pacific. J Clim 15:1643–1658. https://doi.org/10.1175/1520-0442(2002)015%3c1643:HSEEAT%3e2.0.CO;2

    Article  Google Scholar 

  • Wang CZ, Li CX, Mu Mu, Duan WS (2013) Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific. Clim Dyn 40:2887–2902

    Article  Google Scholar 

  • Wang H et al (2014) How well do global climate models simulate the variability of Atlantic tropical cyclones associated with ENSO? J Clim 27:5673–5692. https://doi.org/10.1175/JCLI-D-13-00625.1

    Article  Google Scholar 

  • Wang CZ, Wang XD, Weisberg RH, Black ML (2017a) Variability of tropical cyclone rapid intensification in the North Atlantic and its relationship with climate variations. Clim Dyn 49:3627–3645. https://doi.org/10.1007/s00382-017-3537-9

    Article  Google Scholar 

  • Wang XD, Liu HL, Foltz GR (2017b) Persistent influence of tropical North Atlantic wintertime sea surface temperature on the subsequent Atlantic hurricane season. Geophys Res Lett 44:7927–7935. https://doi.org/10.1002/2017GL074801

    Article  Google Scholar 

  • Wang XD, Wang X, Chu PC (2018) Air-sea interactions during rapid intensification of typhoon Fengshen (2008). Deep Sea Res Part I 140:63–77

    Article  Google Scholar 

  • Wing AA, Emanuel K, Solomon S (2015) On the factors affecting trends and variability in tropical cyclone potential intensity. Geophys Res Lett 42(20):8669–8677. https://doi.org/10.1002/2015GL066145

    Article  Google Scholar 

  • Yu JY, Kao HY (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J Geophys Res 112:D13106. https://doi.org/10.1029/2006JD007654

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation (41776004), the China Ocean Mineral Resources Research and Development Association Program (DY135-E2-3-02), the Fundamental Research Funds for the Central Universities (2016B12514 and 2019B62914), the Opening Project of Key Laboratory of Marine Environmental Information Technology, and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (SJKY19_0416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xidong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, M., Wang, X., Zhou, G. et al. Effect of winter-to-summer El Niño transitions on tropical cyclone activity in the North Atlantic. Clim Dyn 54, 1683–1698 (2020). https://doi.org/10.1007/s00382-019-05081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-05081-9

Keywords

Navigation