What happens to the ocean surface gravity waves when ENSO and MJO phases combine during the extended boreal winter?

  • Victor A. GodoiEmail author
  • Felipe M. de Andrade
  • Tom H. Durrant
  • Audalio R. Torres Júnior


The safety of vulnerable coastal and offshore infrastructures requires an in-depth understanding of wave variability and climate drivers. We investigate the association of significant wave height (Hs) and peak wave period (Tp) with the co-occurrence of El Niño–Southern Oscillation (ENSO) and the Madden–Julian Oscillation (MJO) at the global scale. We calculate composites of daily anomalies in modelled Hs, Tp, and surface wind for periods of ENSO–MJO phase combinations. Calculations spanned November–March seasons over the period 1979–2018. Wave anomalies are widespread across the world’s oceans, with remarkable strength during several ENSO–MJO phase combinations, demonstrating strong tropic–tropic and tropic-extratropic teleconnections. Positive Hs anomalies are strongest in the Pacific Ocean during El Niño–MJO phase 8, in the Atlantic Ocean during ENSO-neutral-MJO phase 3, and in the Indian Ocean during ENSO-neutral-MJO phase 4. Positive Tp anomalies are strongest in the Pacific Ocean during La Niña–MJO phase 8, in the Atlantic Ocean during El Niño–MJO phase 1, and in the Indian Ocean during El Niño–MJO phase 8. In the Southern Ocean, the strongest Hs anomalies occur during El Niño–MJO phase 8, whereas in the Maritime Continent, they appear during ENSO-neutral-MJO phases 5–6. Despite previous studies finding low correlations of ENSO indices with wave parameters in the North Atlantic, our results suggest that ENSO-related conditions play a significant role in the area when combined with certain MJO-related conditions. This study also reveals that the wave anomalies associated with ENSO–MJO phase combinations can be twice as strong as those found in previous work, related only to the MJO. Therefore, considering multiple concurrent climate patterns in the analysis of wave anomalies is essential to developing more reliable coastal management plans.


Global wave variability Climate patterns El Niño–Southern Oscillation (ENSO) Madden–Julian Oscillation (MJO) ENSO–MJO combined activity Wave climate 



This research has been funded by the Brazilian National Council for Scientific and Technological Development (CNPq) [Grant Number 153284/2018-8]. The second author was funded by the UK Research and Innovation as part of the Global Challenges Research Fund, African SWIFT programme [Grant Number NE/P021077/1]. The authors are thankful to the two reviewers of this article, whose comments improved its earlier version, and also to CAWCR (hindcast data), BoM (RMM index), and NOAA (CFSR and CFSv2 winds and ONI) for data provision.


  1. Adames AF, Kim D, Sobel AH, Del Genio A, Wu J (2017) Changes in the structure and propagation of the MJO with increasing CO2. J Adv Model Earth Syst 9:1251–1268. CrossRefGoogle Scholar
  2. Alexander MA, Bladé I, Newman M, Lanzante JR, Lau N, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Clim 15(16):2205–2231.<2205:TABTIO>2.0.CO;2CrossRefGoogle Scholar
  3. Ardhuin F, Rogers E, Babanin AV, Filipot J-F, Magne R, Roland A, van der Westhuysen A, Queffeulou P, Lefevre J-M, Aouf L, Collard F (2010) Semiempirical dissipation source functions for ocean waves. Part I: definition, calibration, and validation. J Phys Oceanogr 40(9):1917–1941. CrossRefGoogle Scholar
  4. Barnard PL, Short AD, Harley MD, Splinter KD, Vitousek S, Turner IL, Allan J, Banno M, Bryan KR, Doria A, Hansen JE, Kato S, Kuriyama Y, Randall-Goodwin E, Ruggiero P, Walker IJ, Heathfield DK (2015) Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation. Nat Geosci 8:801–807. CrossRefGoogle Scholar
  5. Barnard PL, Hoover D, Hubbard DM, Snyder A, Ludka BC, Allan J, Kaminsky GM, Ruggiero P, Gallien TW, Gabel L, McCandless D, Weiner HM, Cohn N, Anderson DL, Serafin KA (2017) Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño. Nat Commun 8:14365. CrossRefGoogle Scholar
  6. Bhatia KT, Vecchi GA, Knutson TR, Murakami H, Kossin J, Dixon KW, Whitlock CE (2019) Recent increases in tropical cyclone intensification rates. Nat Commun 10:635. CrossRefGoogle Scholar
  7. Bjerknes J (1961) “El Niño” study based on analysis of ocean surface temperatures 1935–57. Inter-Am Trop Tuna Comm Bull 5(3):217–303Google Scholar
  8. Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18(4):820–829. CrossRefGoogle Scholar
  9. Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12(7):1990–2009.<1990:TENOSD>2.0.CO;2 CrossRefGoogle Scholar
  10. Cai W, Wang G, Dewitte B, Wu L, Santoso A, Takahashi K, Yang Y, Carréric A, McPhaden MJ (2018) Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564:201–206. CrossRefGoogle Scholar
  11. Cane MA (2005) The evolution of El Niño, past and future. Earth Planet Sci Lett 230(3):227–240. CrossRefGoogle Scholar
  12. Cassou C (2008) Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature 455:523–527. CrossRefGoogle Scholar
  13. Chang C-WJ, Tseng W-L, Hsu H-H, Keenlyside N, Tsuang B-J (2015) The Madden–Julian Oscillation in a warmer world. Geophys Res Lett 42:6034–6042. CrossRefGoogle Scholar
  14. Chase TN, Pielke Sr RA, Avissa R (2006) Teleconnections in the Earth System. In: Anderson MG (ed) Encyclopedia of Hydrological Sciences. Wiley, Hoboken. CrossRefGoogle Scholar
  15. Chawla A, Spindler DM, Tolman HL (2013) Validation of a thirty year wave hindcast using the climate forecast system reanalysis winds. Ocean Model 70:189–206. CrossRefGoogle Scholar
  16. Chen G, Chapron B, Ezraty R, Vandemark D (2002) A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer. J Atmos Ocean Technol 19:1849–1859.<1849:AGVOSA>2.0.CO;2 CrossRefGoogle Scholar
  17. Domingues R, Goni G, Baringer M, Volkov D (2018) What caused the accelerated sea level changes along the U.S. East Coast during 2010–2015? Geophys Res Lett 45:13,367. CrossRefGoogle Scholar
  18. Durrant T, Hemer M, Trenham C, Greenslade D (2013a) CAWCR Wave Hindcast 1979-2010. v8. CSIRO. Service Collection.
  19. Durrant T, Hemer M, Trenham C, Greenslade D (2013b) CAWCR wave hindcast extension Jan 2011–May 2013. v5. CSIRO. Service Collection.
  20. Durrant T, Greenslade D, Hemer M, Trenham C (2014) A global wave hindcast focussed on the Central and South Pacific. CAWCR Technical Report 70Google Scholar
  21. Echevarria ER, Hemer MA, Holbrook NJ (2019) Seasonal variability of the global spectral wind wave climate. J Geophys Res Oceans 124:2924–2939. CrossRefGoogle Scholar
  22. Freund MB, Henley BJ, Karoly DJ, McGregor HV, Abram NJ, Dommenget D (2019) Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries. Nat Geosci 12:450–455. CrossRefGoogle Scholar
  23. Gan MA, Rao VB (1991) Surface cyclogenesis over South America. Mon Weather Rev 119:1293–1302.<1293:SCOSA>2.0.CO;2 CrossRefGoogle Scholar
  24. Godoi VA, Bryan KR, Gorman RM (2016) Regional influence of climate patterns on the wave climate of the southwestern Pacific: the New Zealand region. J Geophys Res Oceans 121(6):4056–4076. CrossRefGoogle Scholar
  25. Godoi VA, Bryan KR, Gorman RM (2018) Storm wave clustering around New Zealand and its connection to climatic patterns. Int J Climatol 38(S1):e401–e417. CrossRefGoogle Scholar
  26. Godoi VA, de Andrade FM, Bryan KR, Gorman RM (2019) Regional-scale ocean wave variability associated with El Niño–Southern Oscillation-Madden–Julian Oscillation combined activity. Int J Climatol 39:483–494. CrossRefGoogle Scholar
  27. Gorman RM, Bryan KR, Laing AK (2003) Wave hindcast for the New Zealand region: deep-water wave climate. N Z J Mar Freshw Res 37(3):589–612. CrossRefGoogle Scholar
  28. Gramcianinov CB, Hodges KI, Camargo R (2019) The properties and genesis environments of South Atlantic cyclones. Clim Dyn. CrossRefGoogle Scholar
  29. Grimm AM (2003) The El Niño impact on the summer monsoon in Brazil: regional processes versus remote influences. J Clim 16(2):263–280.<0263:TENIOT>2.0.CO;2 CrossRefGoogle Scholar
  30. Grimm AM, Ambrizzi T (2009) Teleconnections into South America from the tropics and extratropics on interannual and intraseasonal timescales. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions. Developments in paleoenvironmental research. Springer, Dordrecht, pp 159–191. CrossRefGoogle Scholar
  31. Hemer MA, Zieger S, Durrant T, O’Grady J, Hoeke RK, McInnes KL, Rosebrock U (2017) A revised assessment of Australia’s national wave energy resource. Renew Energy 114(A):85–107. CrossRefGoogle Scholar
  32. Hoell A, Barlow M, Wheeler MC, Funk C (2014) Disruptions of El Niño–Southern Oscillation teleconnections by the Madden–Julian Oscillation. Geophys Res Lett 41:998–1004. CrossRefGoogle Scholar
  33. Izaguirre C, Méndez FJ, Menéndez M, Losada IJ (2011) Global extreme wave height variability based on satellite data. Geophys Res Lett 38(10):L10607. CrossRefGoogle Scholar
  34. Kumar P, Min S-K, Weller E, Lee H, Wang XL (2016) Influence of climate variability on extreme ocean surface wave heights assessed from ERA-Interim and ERA-20C. J Clim 29:4031–4046. CrossRefGoogle Scholar
  35. L’Heureux ML, Thompson DWJ (2006) Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J Clim 19:276–287. CrossRefGoogle Scholar
  36. L’Heureux ML, Lee S, Lyon B (2013) Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat Clim Change 3:571–576. CrossRefGoogle Scholar
  37. Lin H, Derome J, Brunet G (2007) The nonlinear transient atmospheric response to tropical forcing. J Clim 20(22):5642–5665. CrossRefGoogle Scholar
  38. Liu Z, Alexander M (2007) Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev Geophys 45:RG2005. CrossRefGoogle Scholar
  39. Luijendijk A, Hagenaars G, Ranasinghe R, Baart F, Donchyts G, Aarninkhof S (2018) The state of the world’s beaches. Sci Rep 8:6641. CrossRefGoogle Scholar
  40. Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708.<0702:DOADOI>2.0.CO;2CrossRefGoogle Scholar
  41. Madden RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29:1109–1123.<1109:DOGSCC>2.0.CO;2 CrossRefGoogle Scholar
  42. Madden RA, Julian PR (1994) Observations of the 40–50-day tropical oscillation—a review. Mon Weather Rev 122:814–837.<0814:OOTDTO>2.0.CO;2 CrossRefGoogle Scholar
  43. Marshall AG, Hendon HH, Durrant TH, Hemer MA (2015) Madden Julian Oscillation impacts on global ocean surface waves. Ocean Model 96:136–147. CrossRefGoogle Scholar
  44. Marshall AG, Hemer MA, Hendon HH, McInnes KL (2018) Southern annular mode impacts on global ocean surface waves. Ocean Model 129:58–74. CrossRefGoogle Scholar
  45. Matthews AJ, Hoskins BJ, Masutani M (2004) The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Q J R Meteorol Soc 130(601):1991–2011. CrossRefGoogle Scholar
  46. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314(5806):1740–1745. CrossRefGoogle Scholar
  47. Mo KC, Nogues-Paegle J (2005) Pan-America. Intraseasonal variability in the atmosphere-ocean climate system. Springer Praxis Books (Environmental Sciences). Springer, Berlin, Heidelberg, pp 95–124. CrossRefGoogle Scholar
  48. Moon J-Y, Wang B, Ha K-J (2011) ENSO regulation of MJO teleconnection. Clim Dyn 37:1133–1149. CrossRefGoogle Scholar
  49. Neelin JD, Battisti DS, Hirst AC, Jin F-F, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophys Res Oceans 103(C7):14261–14290. CrossRefGoogle Scholar
  50. Rapizo H, Durrant TH, Babanin AV (2018) An assessment of the impact of surface currents on wave modeling in the Southern Ocean. Ocean Dyn 68(8):939–955. CrossRefGoogle Scholar
  51. Reboita MS, da Rocha RP, Ambrizzi T, Sugahara S (2010) South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Clim Dyn 35:1331–1347. CrossRefGoogle Scholar
  52. Reguero BG, Losada IJ, Méndez FJ (2015) A global wave power resource and its seasonal, interannual and long-term variability. Appl Energy 148:366–380. CrossRefGoogle Scholar
  53. Rohith B, Paul A, Durand F, Testut L, Prerna S, Afroosa M, Ramakrishna SSVS, Shenoi SSC (2019) Basin-wide sea level coherency in the tropical Indian Ocean driven by Madden–Julian Oscillation. Nat Commun 10:1257. CrossRefGoogle Scholar
  54. Roundy PE, MacRitchie K, Asuma J, Melino T (2010) Modulation of the global atmospheric circulation by combined activity in the Madden–Julian Oscillation and the El Niño–Southern Oscillation during boreal winter. J Clim 23:4045–4059. CrossRefGoogle Scholar
  55. Saha S, Moorthi S, Pan H, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Wollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou Y, Chuang H, Juang HH, Sela J, Iredell M, Treadon R, Kleist D, Van Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, van den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm J, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou C, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds R, Rutledge G, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057. CrossRefGoogle Scholar
  56. Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y-T, Chuang H, Iredell M, Ek M, Meng J, Yang R, Mendez MP, van den Dool H, Zhang Q, Wang W, Chen M, Becker E (2014) The NCEP Climate Forecast System version 2. J Clim 27:2185–2208. CrossRefGoogle Scholar
  57. Semedo A, Sušelj K, Rutgersson A, Sterl A (2011) A global view on the wind sea and swell climate and variability from ERA-40. J Clim 24:1461–1479. CrossRefGoogle Scholar
  58. Seo K-H, Son S-W (2012) The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian Oscillation during northern winter. J Atmos Sci 69(1):79–96. CrossRefGoogle Scholar
  59. Shimizu MH, Ambrizzi T (2016) MJO influence on ENSO effects in precipitation and temperature over South America. Theor Appl Climatol 124:291–301. CrossRefGoogle Scholar
  60. Shimizu MH, Cavalcanti IFA (2011) Variability patterns of Rossby wave source. Clim Dyn 37:441–454. CrossRefGoogle Scholar
  61. Shimura T, Mori N, Mase H (2013) Ocean waves and teleconnection patterns in the Northern Hemisphere. J Clim 26:8654–8670. CrossRefGoogle Scholar
  62. Stan C, Straus DM, Frederiksen JS, Lin H, Maloney ED, Schumacher C (2017) Review of tropical-extratropical teleconnections on intraseasonal time scales. Rev Geophys 55(4):902–937. CrossRefGoogle Scholar
  63. Stopa JE (2018) Wind forcing calibration and wave hindcast comparison using multiple reanalysis and merged satellite wind datasets. Ocean Model 127:55–69. CrossRefGoogle Scholar
  64. Stopa JE, Cheung KF (2014) Periodicity and patterns of ocean wind and wave climate. J Geophys Res Oceans 119:5563–5584. CrossRefGoogle Scholar
  65. Stopa JE, Cheung KF, Tolman HL, Chawla A (2013) Patterns and cycles in the climate forecast system reanalysis wind and wave data. Ocean Model 70:207–220. CrossRefGoogle Scholar
  66. Student (1908) The probable error of a mean. Biometrika 6(1):1–25. CrossRefGoogle Scholar
  67. Tolman HL (1991) A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. J Phys Oceanogr 21:782–797.<0782:ATGMFW>2.0.CO;2 CrossRefGoogle Scholar
  68. Tolman HL (2014) User manual and system documentation of WAVEWATCH III™ version 4.18. Technical Note 316, NOAA/NWS/NCEP/MMABGoogle Scholar
  69. Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9(6):303–319. CrossRefGoogle Scholar
  70. Walker GT, Bliss EW (1932) World weather V. Mem R Meteorol Soc 4(36):53–84Google Scholar
  71. Walker GT, Bliss EW (1937) World weather VI. Mem R Meteorol Soc 4(39):119–139Google Scholar
  72. Weaver SJ, Wang W, Chen M, Kumar A (2011) Representation of MJO Variability in the NCEP Climate Forecast System. J Clim 24:4676–4694. CrossRefGoogle Scholar
  73. Wen C, Kumar A, Xue Y (2018) Uncertainties in reanalysis surface wind stress and their relationship with observing systems. Clim Dyn 52(5–6):3061–3078. CrossRefGoogle Scholar
  74. Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932.<1917:AARMMI>2.0.CO;2 CrossRefGoogle Scholar
  75. Wilks DS (2006) Statistical methods in the atmospheric sciences, 3rd edn. Academic Press, London. Google Scholar
  76. Wyrtki K (1975) El Niño—the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr 5:572–584.<0572:ENTDRO>2.0.CO;2 CrossRefGoogle Scholar
  77. Young IR (1999) Seasonal variability of the global ocean wind and wave climate. Int J Climatol 19(9):931–950.<931::AID-JOC412>3.0.CO;2-O CrossRefGoogle Scholar
  78. Young IR, Ribal A (2019) Multiplatform evaluation of global trends in wind speed and wave height. Science 364(6440):548–552. CrossRefGoogle Scholar
  79. Zhu G, Lin W, Zhao S, Cao Y (2015) Spatial and temporal variation characteristics of ocean waves in the South China Sea during the boreal winter. Acta Oceanol Sin 34(1):23–28. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Marine Science Institute (ICMar), Federal University of MaranhãoSão LuísBrazil
  2. 2.Department of Meteorology, Harry Pitt BuildingUniversity of ReadingReadingUK
  3. 3.Oceanum LtdRaglanNew Zealand

Personalised recommendations