Advertisement

Change of El Niño and La Niña amplitude asymmetry around 1980

  • Xiao Pan
  • Tim LiEmail author
  • Mingcheng Chen
Article
  • 50 Downloads

Abstract

Amplitude of El Niño and La Niña was significantly different during 1980–2016 but almost same during 1958–1979. The cause of this interdecadal change is investigated through an oceanic mixed-layer heat budget analysis. It was found that this interdecadal change was primarily attributed to the distinctive effects of nonlinear zonal temperature advection between the two periods. During 1980–2016 nonlinear zonal advection, working together with nonlinear meridional advection, contributes to the El Niño and La Niña amplitude asymmetry. During 1958–1979 the nonlinear zonal advection had an opposite effect. The difference in the nonlinear zonal advection between the two interdecadal periods was caused by distinctive longitudinal locations of El Niño centers. Maximum SST anomaly (SSTA) centers were confined near the coast of South America (east of 90° W) during the first period but appear near 110° W during the second period. Because of this difference, an anomalous eastward ocean surface current (caused by a positive thermocline depth anomaly during El Niño) would generate a negative (positive) nonlinear zonal advection before (after) 1980. The distinctive longitudinal locations of El Niño centers are possibly caused by the interdecadal changes of mean thermocline and high-frequency wind variability over the equatorial western-central Pacific. A hypothesis was put forth to understand distinctive initiation locations between El Niño and La Niña.

Keywords

El Niño and La Niña amplitude asymmetry Interdecadal change Nonlinear advection El Niño initiation location Mean thermocline change Westerly wind events 

Notes

Acknowledgements

This work was supported by NSFC Grants 41630423, NSF Grant AGS-15-65653, NOAA Grant NA18OAR4310298, and Jiangsu NSF grant BK20180811. This is SOEST contribution number 10864, IPRC contribution number 1416, and ESMC contribution number 291.

References

  1. An SI (2004) Interdecadal changes in the El Niño-La Niña asymmetry. Geophys Res Lett 31:L23210CrossRefGoogle Scholar
  2. An SI, Jin FF (2004) Nonlinearity and asymmetry of ENSO. J Clim 17(14):2851–2865CrossRefGoogle Scholar
  3. An SI, Hsieh WW, Jin FF (2005) A nonlinear analysis of the ENSO cycle and its interdecadal changes. J Clim 18:3229–3239CrossRefGoogle Scholar
  4. Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 46(12):1687–1712CrossRefGoogle Scholar
  5. Behringer DW (2007) The Global Ocean Data Assimilation System (GODAS) at NCEP. In: Preprints 11th Symp. on integrated observing and assimilation systems for atmosphere, oceans, and land surface, San Antonio, TX, Amer Meteor Soc, 3.3Google Scholar
  6. Bove MC, O’Brien JJ, Eisner JB et al (1998) Effect of El Niño on US Landfalling hurricanes, revisited. Bull Am Meteorol Soc 79(11):2477–2482CrossRefGoogle Scholar
  7. Burgers G, Stephenson DB (1999) The “normality” of El Niño. Geophys Res Lett 26(8):1027–1030CrossRefGoogle Scholar
  8. Cai W et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4:111–116CrossRefGoogle Scholar
  9. Cane MA, Zebiak SE (1985) A theory for El Niño and the Southern oscillation. Science 228(4703):1085–1087CrossRefGoogle Scholar
  10. Capotondi A, Sardeshmukh PD, Ricciardulli L (2018) The nature of the stochastic wind forcing of ENSO. J Clim 31(19):8081–8099CrossRefGoogle Scholar
  11. Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Weather Rev 136(136):2999–3017CrossRefGoogle Scholar
  12. Carton JA, Chepurin G, Cao X et al (2000) A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: methodology. J Phys Oceanogr 30(2):294–309CrossRefGoogle Scholar
  13. Chang P, Wang B, Li T, Ji L (1994) Interactions between the seasonal cycle and the Southern Oscillation: frequency entrainment and chaos in an intermediate coupled ocean atmosphere model. Geophys Res Lett 21:2817–2820CrossRefGoogle Scholar
  14. Changnon SA (1999) Impacts of 1997-98 El Niño Generated Weather in the United States. Bull Am Meteorol Soc 80(9):1819–1827CrossRefGoogle Scholar
  15. Chen L, Li T, Yu Y (2015) Causes of strengthening and weakening of enso amplitude under global warming in four CMIP5 models. J Clim 28:3250–3274CrossRefGoogle Scholar
  16. Chen L, Li T, Behera SK, Doi T (2016a) Distinctive precursory air-sea signals between regular and super El Niños. Adv Atmos Sci 33:996–1004CrossRefGoogle Scholar
  17. Chen L, Yu Y, Zheng W (2016b) Improved ENSO simulation from climate system model FGOALS-g1.0 to FGOALS-g2. Clim Dyn 47:2617–2634CrossRefGoogle Scholar
  18. Chen M, Li T, Shen X et al (2016c) Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña. J Clim 29(6):2201–2220CrossRefGoogle Scholar
  19. Chen L, Li T, Yu Y, Behera SK (2017a) A possible explanation for the divergent projection of ENSO amplitude change under global warming. Clim Dyn 49:3799–3811CrossRefGoogle Scholar
  20. Chen L, Li T, Wang B, Wang L (2017b) Formation mechanism for 2015/16 super El Niño. Sci Rep 7:2975CrossRefGoogle Scholar
  21. Chen L, Zheng W, Braconnot P (2019) Towards understanding the suppressed ENSO activity during mid-Holocene in PMIP2 and PMIP3 simulations. Clim Dyn 53(1–2):1095–1110CrossRefGoogle Scholar
  22. Choi J, An SI, Dewitte B, Hsieh WW (2009) Interactive feedback between the tropical Pacific decadal oscillation and ENSO in a coupled general circulation model. J Clim 22:6597–6611CrossRefGoogle Scholar
  23. Chung PH, Li T (2013) Interdecadal relationship between the mean state and El Niño types. J Clim 26(2):361–379CrossRefGoogle Scholar
  24. Collins M et al (2010) The impact of global warming on the tropical Pacific and El Niño. Nat Geosci 3:391–397CrossRefGoogle Scholar
  25. Compo GP, Whitaker JS, Sardeshmukh PD (2006) Feasibility of a 100-year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87(2):175–190CrossRefGoogle Scholar
  26. Dee DP, Uppala SM, Simmons AJ et al (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  27. Dong B, Sutton RT, Scaife AA (2006) Multidecadal modulation of El Niño-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Lett 33:L08705Google Scholar
  28. Hong CC, Li T, Kug JS (2008) Asymmetry of the Indian Ocean dipole. Part I: observational analysis. J Clim 21(18):4834–4848CrossRefGoogle Scholar
  29. Hu ZZ, Kumar A, Jha B et al (2012) An analysis of warm pool and cold tongue El Niños: air-sea coupling processes, global influences, and recent trends. Clim Dyn 38(9–10):2017–2035CrossRefGoogle Scholar
  30. Huang R, Wu Y (1989) The influence of ENSO on the summer climate change in China and its mechanism. Adv Atmos Sci 6(1):21–32CrossRefGoogle Scholar
  31. Huang B, Xue Y, Zhang D et al (2010) The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual time scales. J Clim 23(18):4901–4925CrossRefGoogle Scholar
  32. Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci 54(7):811–829CrossRefGoogle Scholar
  33. Jin FF, An SI, Timmermann A et al (2003) Strong El Niño events and nonlinear dynamical heating. Geophys Res Lett 30(3):20-1–20-4CrossRefGoogle Scholar
  34. Kanamitsu M, Ebisuzaki W, Woollen J et al (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83(11):1631–1643CrossRefGoogle Scholar
  35. Kang IS, No HH, Kucharski F (2014) ENSO amplitude modulation associated with the mean SST changes in the tropical central Pacific induced by Atlantic multidecadal oscillation. J Clim 27:7911–7920CrossRefGoogle Scholar
  36. Kirtman BP, Schopf PS (1998) Decadal variability in ENSO predictability and prediction. J Clim 11(11):2804–2822CrossRefGoogle Scholar
  37. Kumar A, Hu ZZ (2012) Uncertainty in the ocean-atmosphere feedbacks associated with ENSO in the reanalysis products. Clim Dyn 39(3–4):575–588CrossRefGoogle Scholar
  38. Li T (1997) Phase transition of the El Niño-Southern Oscillation: a Stationary SST Mode. J Atmos Sci 54(54):2872–2887CrossRefGoogle Scholar
  39. Li T, Hsu PC (2017) ENSO dynamics. Fundamentals of tropical climate dynamics. Springer International Publishing, Cham, p 236Google Scholar
  40. Li T, Zhang Y, Lu E, Wang D (2002) Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: an OGCM diagnosis. Geophys Res Lett 29:25-21–25-24Google Scholar
  41. Li T, Wang B, Wu B et al (2017) Theories on formation of an anomalous anticyclone in Western North Pacific during El Niño: a review. J Meteorol Res 31(6):987–1006CrossRefGoogle Scholar
  42. Li X, Hu ZZ, Huang B (2019) Contributions of atmosphere-ocean interaction and low-frequency variation to intensity of strong El Niño events since 1979. J Clim 32(5):1381–1394CrossRefGoogle Scholar
  43. Mcphaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314(5806):1740–1745CrossRefGoogle Scholar
  44. Neelin JD, Battisti DS, Hirst AC et al (1998) ENSO theory. J Geophys Res Oceans 103(C7):14261–14290CrossRefGoogle Scholar
  45. Okumura YM, Deser C (2010) Asymmetry in the duration of El Niño and La Niña. J Clim 23(21):5826–5843CrossRefGoogle Scholar
  46. Okumura YM, Sun T, Wu X (2017) Asymmetric modulation of El Niño and La Niña and the linkage to tropical Pacific decadal variability. J Clim 30:4705–4733CrossRefGoogle Scholar
  47. Philander SG (1990) El Niño, La Niña, and the Southern Oscillation. Academic Press, London, p 289Google Scholar
  48. Philander SGH, Yamagata T, Pacanowski RC (1984) Unstable air-sea interactions in the tropics. J Atmos Sci 41(4):604–613CrossRefGoogle Scholar
  49. Picaut J, Masia F, Penhoat YD (1997) An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 277(5326):663–666CrossRefGoogle Scholar
  50. Rasmusson EM, Carpenter TH (1982) Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño. Mon Weather Rev 110(5):354–384CrossRefGoogle Scholar
  51. Rodgers KB, Friederichs P, Latif M (2004) Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J Clim 17:3761–3774CrossRefGoogle Scholar
  52. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern oscillation. Mon Weather Rev 115:1606–1626CrossRefGoogle Scholar
  53. Smith TM, Reynolds RW, Peterson TC et al (2008) Improvements to NOAAs historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296CrossRefGoogle Scholar
  54. Su JZ, Zhang RH, Rong XY et al (2010) Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J Clim 23(3):605–617CrossRefGoogle Scholar
  55. Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45(21):3283–3287CrossRefGoogle Scholar
  56. Uppala SM, Kallberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012CrossRefGoogle Scholar
  57. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109(4):784–812CrossRefGoogle Scholar
  58. Wang B, An SI (2001) Why the properties of El Niño changed during the late 1970s. Geophys Res Lett 28(19):3709–3712CrossRefGoogle Scholar
  59. Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect east Asian climate? J Clim 13(9):1517–1536CrossRefGoogle Scholar
  60. Wang B, Wu R, Li T (2003) Atmosphere–warm ocean interaction and its impacts on Asian-Australian Monsoon variation. J Clim 16:1195–1211CrossRefGoogle Scholar
  61. Weisberg RH, Wang C (1997) A Western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys Res Lett 24(7):779–782CrossRefGoogle Scholar
  62. White GH (1980) Skewness, kurtosis and extreme values of northern hemisphere geopotential heights. Mon Weather Rev 108(9):1446–1455CrossRefGoogle Scholar
  63. Wu B, Li T, Zhou TJ (2010) Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J Clim 23(18):4807–4822CrossRefGoogle Scholar
  64. Wu B, Zhou TJ, Li T (2017) Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: maintenance mechanisms. J Clim 30:9621–9635CrossRefGoogle Scholar
  65. Xiang B, Wang B, Li T (2013) A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Clim Dyn 41(2):327–340CrossRefGoogle Scholar
  66. Xue Y, Smith TM, Reynolds RW (2003) Interdecadal changes of 30-Yr SST normals during 1871–2000. J Clim 16(10):1601–1612CrossRefGoogle Scholar
  67. Yeh SW, Kirtman BP (2004) Tropical Pacific decadal variability and ENSO amplitude modulation in a CGCM. J Geophys Res 109:C11009CrossRefGoogle Scholar
  68. Yeo SR, Yeh SW, Kim KY et al (2016) The role of low frequency variation in the manifestation of warming trend and ENSO amplitude. Clim Dyn 49(4):1197–1213CrossRefGoogle Scholar
  69. Zhu ZW, Li T (2016) A new paradigm for continental US summer rainfall variability: Asia-North America teleconnection. J Clim 29:7313–7327CrossRefGoogle Scholar
  70. Zhu ZW, Li T (2018) Amplified contiguous United States summer rainfall variability induced by East Asian monsoon interdecadal change. Clim Dyn 50(9–10):3523–3536CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environmental Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)Nanjing University of Information Science and TechnologyNanjingChina
  2. 2.Department of Atmospheric Sciences, International Pacific Research Center, School of Ocean and Earth Science and TechnologyUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations