Advertisement

The dynamics of cyclones in the twentyfirst century: the Eastern Mediterranean as an example

  • Assaf HochmanEmail author
  • Pinhas Alpert
  • Pavel Kunin
  • Dorita Rostkier-Edelstein
  • Tzvi Harpaz
  • Hadas Saaroni
  • Gabriele Messori
Article

Abstract

The Mediterranean region is projected to be significantly affected by climate change through warming and drying. The Eastern Mediterranean (EM) is particularly vulnerable since the bulk of the precipitation in the region is associated with a specific circulation pattern, known as Cyprus Low (CL). Here, we study the influence of increased greenhouse gases on the average properties and dynamics of CLs, using a regional semi-objective synoptic classification. The classification is applied to NCEP/NCAR reanalysis data for the present day (1986–2005) as well as to eight CMIP5 models for the present day and for the end of the century (2081–2100; RCP8.5). This is complemented by a dynamical systems analysis, which is used to investigate changes in the dynamics and intrinsic predictability of the CLs. Finally, a statistical downscaling algorithm, based on past analogues, is applied to eighteen rain stations over Israel, and is used to project precipitation changes associated with CLs. Significant changes in CL properties are found under climate change. The models project an increase in CL meridional pressure gradient (0.5–1.5 hPa/1000 km), which results primarily from a strong increase in the pressure over the southern part of the study region. Our results further point to a decrease in CL frequency (− 35%, as already noted in an earlier study) and persistence (− 8%). Furthermore, the daily precipitation associated with CL occurrences over Israel for 2081–2100 is projected to significantly reduce (− 26%). The projected drying over the EM can be partitioned between a decrease in CL frequency (~ 137 mm year−1) and a reduction in CL-driven daily precipitation (~ 67 mm year−1). The models further indicate that CLs will be less predictable in the future.

Keywords

Cyprus low Cyclone predictability Climate change Cyclone dynamics Synoptic classification Dynamical systems Statistical downscaling Daily precipitation 

Notes

Acknowledgements

We thank Tel-Aviv University’s President and the Mintz foundation. This study was also partially supported by cooperation within the international virtual institute DESERVE (Dead Sea Research Venue), funded by the German Helmholtz Association, the Israel Science Foundation (ISF Grant no. 1123/17) and the Water Authority of Israel. G. Messori was partly supported by a grant from the Department of Meteorology of Stockholm University and by the Swedish Research Council Vetenskapsrådet, under Grant no. 2016-03724. This paper is a contribution to the Hydrological Cycle in the Mediterranean Experiment (HyMeX) community.

Supplementary material

382_2019_5017_MOESM1_ESM.docx (292 kb)
Supplementary material 1 (DOCX 292 kb)

References

  1. Alpert P, Reisin T (1986) An early winter polar air mass penetration to the Eastern Mediterranean. Mon Weather Rev 114:1411–1418CrossRefGoogle Scholar
  2. Alpert P, Ziv B (1989) The Sharav cyclone—observations and some theoretical considerations. J Geophys Res 94:18495–18514CrossRefGoogle Scholar
  3. Alpert P, Neeman BU, Shay-El Y (1990) Climatological analysis of Mediterranean cyclones using ECMWF data. Tellus 42A:65–77CrossRefGoogle Scholar
  4. Alpert P, Stein U, Tsidulko M (1995) Role of sea-fluxes and topography in Eastern Mediterranean cyclogenesis. Glob Atmos Ocean Syst 3:55–79Google Scholar
  5. Alpert P, Osetinsky I, Ziv B, Shafir H (2004a) Semi-objective classification for daily synoptic systems: application to the Eastern Mediterranean climate change. Int J Climatol 24:1001–1011CrossRefGoogle Scholar
  6. Alpert P, Osetinsky I, Ziv B, Shafir H (2004b) A new seasons’ definition based on classified daily synoptic systems: an example for the Eastern Mediterranean. Int J Climatol 24:1013–1021.  https://doi.org/10.1002/joc.1037 CrossRefGoogle Scholar
  7. Beersma JJ, Buishand TA (2003) Multi-site simulation of daily precipitation and temperature conditional on the atmospheric circulation. Clim Res 25:121–133CrossRefGoogle Scholar
  8. Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543CrossRefGoogle Scholar
  9. Carnell RE, Senior CA (1998) Changes in mid-latitude variability due to increasing greenhouse gases and sulphate aerosols. Clim Dynam 14:369–383CrossRefGoogle Scholar
  10. Dayan U, Tubi A, Levy I (2012) On the importance of synoptic classification methods with respect to environmental phenomena. Int J Climatol 32:681–694CrossRefGoogle Scholar
  11. Drobinski P, Alpert P, Cavicchia L, Flaounas E, Hochman A, Kotroni V (2016) Strong winds. In: Sabrie ML, Gilbert-Brunet E, Mourier T (eds) The Mediterranean region under climate change—a scientific update. Institut de Recherche pour le Développement, Marseille, pp 115–122Google Scholar
  12. Egger J, Alpert P, Tafferner A, Ziv B (1995) Numerical experiments on the genesis of Sharav cyclones: idealized simulations. Tellus 47A:162–174CrossRefGoogle Scholar
  13. Eichler TP, Gaggini N, Pan Z (2013) Impacts of global warming on Northern Hemisphere winter storm tracks in the CMIP5 model suite. J Geophys Res Atmos 118(10):3919–3932.  https://doi.org/10.1002/jgrd.50286 CrossRefGoogle Scholar
  14. Enzel Y, Bookman R, Sharon D, Gvirtzman H, Dayan U, Ziv B, Stein M (2003) Late Holocene climates of the Near East deduced from Dead Sea level variations and modem regional winter rainfall. Quat Res 60(3):263–273.  https://doi.org/10.1016/j.yqres.2003.07.011 CrossRefGoogle Scholar
  15. Faranda D, Messori G, Yiou P (2017a) Dynamical proxies of North Atlantic predictability and extremes. Sci Rep 7:412782017b.  https://doi.org/10.1038/srep4127 CrossRefGoogle Scholar
  16. Faranda D, Messori G, Alvarez-Castro MC, Yiou P (2017b) Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years. Nonlinear Processes Geophys 24(4):713–725CrossRefGoogle Scholar
  17. Faranda D, Messori G, Vannistem S (2019a) Attractor dimension of time-averaged climate observables: insights from a low-order ocean-atmosphere model. Tellus A.  https://doi.org/10.1080/16000870.2018.1554413 CrossRefGoogle Scholar
  18. Faranda D, Alvarez-Castro MC, Messori G, Rodrigues D, Yiou P (2019b) The hammam effect or how a warm ocean enhances large scale atmospheric predictability. Nat Commun 10(1):1316CrossRefGoogle Scholar
  19. Flaounas E, Raveh-Rubin S, Wernli H, Drobinski P, Bastin S (2015) The dynamical structure of intense Mediterranean cyclones. Clim Dyn 44:2411–2427CrossRefGoogle Scholar
  20. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modeling to impacts studies: recent advances in downscaling techniques for hydrological modeling. Int J Climatol 27:1547–1578.  https://doi.org/10.1002/joc.1556 CrossRefGoogle Scholar
  21. Freitas ACM, Freitas JM, Todd M (2010) Hitting time statistics and extreme value theory. Probab Theory Relat Fields 147:675–710CrossRefGoogle Scholar
  22. Freitas ACM, Freitas JM, Vaienti S (2017) Extreme Value Laws for non-stationary processes generated by sequential and random dynamical systems. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 53(3):1341–1370CrossRefGoogle Scholar
  23. Gagniuc PA (2017) Markov chains: from theory to implementation and experimentation. John Wiley, HobokenCrossRefGoogle Scholar
  24. Geng Q, Sugi M (2003) Possible change of extratropical cyclone activity due to enhanced greenhouse gases and sulfate aerosols—study with a high-resolution AGCM. J Clim 16:2262–2274CrossRefGoogle Scholar
  25. Gillet NP, Fyfe JC (2013) Annular mode changes in the CMIP5 simulations. Geophys Res Lett 40:1189–1193.  https://doi.org/10.1002/grl.50249 CrossRefGoogle Scholar
  26. Giorgi F (2006) Climate change hot spots. Geophys Res Lett 33:L08CrossRefGoogle Scholar
  27. González-Alemán JJ, Pascale S, Gutierrez-Fernandez J, Murakami H, Gaertner MA, Vecchi GA (2019) Potential increase in hazard from Mediterranean hurricane activity with global warming. Geophys Res Lett 46(3):1754–1764CrossRefGoogle Scholar
  28. Hochman A, Harpaz T, Saaroni H, Alpert P (2018a) Synoptic classification in 21st century CMIP5 predictions over the Eastern Mediterranean with focus on cyclones. Int J Climatol 38:1476–1483.  https://doi.org/10.1002/joc.5260 CrossRefGoogle Scholar
  29. Hochman A, Harpaz T, Saaroni H, Alpert P (2018b) The seasons’ length in 21st century CMIP5 projections over the Eastern Mediterranean. Int J Climatol 38(6):2627–2637.  https://doi.org/10.1002/joc.5448 CrossRefGoogle Scholar
  30. Hochman A, Alpert P, Harpaz T, Saaroni H, Messori G (2019a) A new dynamical systems perspective on atmospheric predictability: Eastern Mediterranean weather regimes as a case study. Sci Adv.  https://doi.org/10.1126/sciadv.aau0936 CrossRefGoogle Scholar
  31. Hochman A, Kunin P, Alpert P, Harpaz T, Saaroni H, Rostkier-Edelstein D (2019b) Weather regimes and analogues downscaling of seasonal precipitation for the 21st century; A case study over Israel. Int J Climatol.  https://doi.org/10.1002/joc.6318 (in press) CrossRefGoogle Scholar
  32. Hoerling MP, Hurrel JW, Xu T (2001) Tropical origins for recent North Atlantic climate change. Science 292:90–92.  https://doi.org/10.1126/science.1058582 CrossRefGoogle Scholar
  33. IPCC (2013) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker T.F. Qin D. Plattner G. K. Tignor M. Allen S.K. Boschung J. Nauels A. Xia Y. Bex V. and Midgley P.M. (eds)]. Cambridge University Press, Cambridge, and New York, 1535 pp.  https://doi.org/10.1017/cbo9781107415324 Google Scholar
  34. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  35. Karas S, Zangvil A (1999) A preliminary analysis of disturbance tracks over the Mediterranean basin. Theor Appl Climatol 64:239–248CrossRefGoogle Scholar
  36. Karpechko AY (2010) Uncertainties in future climate attributable to uncertainties in future annular mode trend. Geophys Res Lett 37:L20702.  https://doi.org/10.1029/2010GL044717 CrossRefGoogle Scholar
  37. Lanzante JR, Dixon KW, Nath MJ, Whitlock CE, Adams-Smith D (2018) Some pitfalls in statistical downscaling of future climate. Bull Am Meteorol Soc 99:791–803.  https://doi.org/10.1175/BAMS-D-17-0046.1 CrossRefGoogle Scholar
  38. Laprise R et al (2008) Challenging some tenets of regional climate modelling. Meteorol Atmos Phys 100:3–22CrossRefGoogle Scholar
  39. Leckebusch GC, Koffi B, Ulbrich U, Pinto JG, Spangehl T, Zacharias S (2006) Analysis of frequency and intensity of winter storm events in Europe on synoptic and regional scales from a multi-model perspective. Clim Res 31:59–74CrossRefGoogle Scholar
  40. Lelieveld J, Proestos Y, Hadjinicolaou P, Tanarhte M, Tyrlis E, Zittis G (2016) Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim Change 137:245–260.  https://doi.org/10.1007/s10584-016-1665-6 CrossRefGoogle Scholar
  41. Lionello P (ed) (2012) The climate of the Mediterranean region, from the past to the future. Elsevier, Amsterdam, p 502Google Scholar
  42. Lionello P, Giorgi F (2007) Winter precipitation and cyclones in the mediterranean region: future climate scenarios in a regional simulation. Adv Geosci 12:153–158CrossRefGoogle Scholar
  43. Lionello P, Dalan F, Elvini E (2002) Cyclones in the Mediterranean region: the present and the doubled CO2 climate scenarios. Clim Res 22:147–159CrossRefGoogle Scholar
  44. Lionello P, Malanbotte-Rizzoli P, Boscolo R (2006) Mediterranean climate variability. Developments in earth and environmental sciences, vol 4. Elsevier, Amsterdam, pp 325–372Google Scholar
  45. Lionello P, Gacic AF, Planton M, Trigo SR, Ulbrich U (2014) The climate of the Mediterranean region: research progress and climate change impacts. Reg Environ Change 14:1679–1684CrossRefGoogle Scholar
  46. Lionello P, Trigo IF, Gil V, Liberato ML, Nissen KM, Pinto JG, Raible CC, Reale M, Tanzarella A, Trigo RM, Ulbrich S (2016) Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria. Tellus A 68:1–18CrossRefGoogle Scholar
  47. Lorenz EN (1963) Deterministic non periodic flow. J Atmos Sci 20:130–141CrossRefGoogle Scholar
  48. Lorenz EN (1969) Atmospheric predictability as revealed by naturally occurring analogues. J Atmos Sci 26:636–646.  https://doi.org/10.1175/1520-0469(1969)26%3c636:APARBN%3e2.0.CO;2 CrossRefGoogle Scholar
  49. Lorenz EN (1980) Attractor sets and quasi-geostrophic equilibrium. J Atmos Sci 37:1685–1699CrossRefGoogle Scholar
  50. Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34:L06805.  https://doi.org/10.1029/2006GL028443 CrossRefGoogle Scholar
  51. Lucarini V, Faranda D, Wouters J (2012) Universal behavior of extreme value statistics for selected observables of dynamical systems. J Stat Phys 147:63–73CrossRefGoogle Scholar
  52. Lucarini V, Faranda D, Freitas ACM, Freitas JM, Holland M, Kuna T, Nicol M, Todd M, Vaienti S (2016) Extremes and Recurrence in dynamical systems. Pure and applied mathematics: a wiley series of texts, monographs and tracts. Wiley, Hoboken, pp 126–172Google Scholar
  53. Maraun D, Widmann M (2018) Statistical downscaling and bias correction for climate research. Cambridge University Press, Cambridge.  https://doi.org/10.1017/9781107588783 CrossRefGoogle Scholar
  54. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themessl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:3003CrossRefGoogle Scholar
  55. Messori G, Caballero R, Faranda D (2017) A dynamical systems approach to studying mid-latitude weather extremes. Geophys Res Lett 44(7):3346–3354CrossRefGoogle Scholar
  56. Nissen KM, Leckebusch GC, Pinto JG, Renggli D, Ulbrich S, Ulbrich U (2010) Cyclones causing wind storms in the Mediterranean: characteristics, trends and links to large-scale patterns. Nat Hazards Earth Syst Sci 10:1379–1391CrossRefGoogle Scholar
  57. Nissen KM, Leckebusch GC, Pinto JG, Ulbrich U (2014) Mediterranean cyclones and windstorms in a changing climate. Reg Environ Change 14:1873–1890CrossRefGoogle Scholar
  58. Peleg N, Bartov M, Morin E (2015) CMIP5-predicted climate shifts over the East Mediterranean: implications for the transition region between Mediterranean and semi-arid climates. Int J Climatol 35(8):2144–2153CrossRefGoogle Scholar
  59. Pinto JG, Spangehl T, Ulbrich U, Speth P (2006) Assessment of winter cyclone activity in a transient ECHAM4-OPYC3 GHG experiment. Meteorol Z 15:279–291CrossRefGoogle Scholar
  60. Pinto JG, Ulbrich U, Leckebusch GC, Spangehl T, Reyers M, Zacharias S (2007) Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPIOM1 GCM. Clim Dyn 29:195–210CrossRefGoogle Scholar
  61. Raible CC, Saaroni H, Ziv B, Wild M (2010) Winter cyclonic activity over the Mediterranean Basin under future climate, based on the ECHAM5 GCM. Clim Dyn 35:473–488CrossRefGoogle Scholar
  62. Rodrigues D, Alvarez-Castro MC, Messori G, Yiou P, Robin Y, Faranda D (2018) Dynamical properties of the North Atlantic atmospheric circulation in the past 150 years in CMIP5 models and the 20CRv2c reanalysis. J Clim 31:6097–6111.  https://doi.org/10.1175/JCLI-D-17-0176.1 CrossRefGoogle Scholar
  63. Rostkier-Edelstein D, Kunin P, Hopson TM, Yubao L, Givati A (2016) Statistical downscaling of seasonal precipitation in Israel. Int J Climatol 36:590–606CrossRefGoogle Scholar
  64. Saaroni H, Halfon N, Ziv B, Alpert P, Kutiel H (2010a) Links between the rainfall regime in Israel and location and intensity of cyprus lows. Int J Climatol 30:1014–1025Google Scholar
  65. Saaroni H, Ziv B, Osetinsky I, Alpert P (2010b) Factors governing the inter-annual variation and the long-term trend of the 850-hPa temperature over Israel. Q J R Meteorol Soc 136:305–318Google Scholar
  66. Salvi K, Ghosh S, Ganguly AR (2016) Credibility of statistical downscaling under nonstationary climate. Clim Dyn 46:1991–2023.  https://doi.org/10.1007/s00382-015-2688-9 CrossRefGoogle Scholar
  67. Samuels R, Hochman A, Baharad A, Givati A, Levi Y, Yosef Y, Saaroni H, Ziv B, Harpaz T, Alpert P (2017) Evaluation and projection of extreme precipitation indices in the Eastern Mediterranean based on CMIP5 multi model ensemble. Int J Climatol 38(5):2280–2297.  https://doi.org/10.1002/joc.5334 CrossRefGoogle Scholar
  68. Scher S, Messori G (2018) Predicting weather forecast uncertainty with machine learning. Q J R Meteorol Soc.  https://doi.org/10.1002/qj.3410 CrossRefGoogle Scholar
  69. Scher S, Messori G (2019) How global warming changes the difficulty of synoptic weather forecasting. Geophys Res Lett 46(5):2931–2939CrossRefGoogle Scholar
  70. Schultz DM, Bosart LF, Colle BA, Davies HC, Dearden C, Keyser D, Martius O, Roebber PJ, Steenburgh WJ, Volkert H, Winters AC (2019) Extratropical cyclones: a century of research on meteorology’s centerpiece. Meteorol Monogr 59:16.1–16.56.  https://doi.org/10.1175/amsmonographs-d-18-0015.1 CrossRefGoogle Scholar
  71. Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1(1):21–24.  https://doi.org/10.1038/ngeo.2007.38 CrossRefGoogle Scholar
  72. Shay-El Y, Alpert P (1991) A diagnostic study of winter adiabatic heating in the Mediterranean in relation to cyclones. Q J R Meteorol Soc 117:715–747CrossRefGoogle Scholar
  73. Sillman J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extreme indices in the CMIP5 multi-model ensemble: part 1. Model evaluation in the present climate. J Geophys Res 118:1716–1733Google Scholar
  74. Stein U, Alpert P (1991) Inclusion of sea moisture flux in the Anthes-Kuo cumulus parametrization. Contrib Atmos Phys 64:231–243Google Scholar
  75. Süveges M (2007) Likelihood estimation of the extremal index. Extremes 10(1–2):41–55CrossRefGoogle Scholar
  76. Tamarin-Brodsky T, Kaspi Y (2017) Enhanced poleward propagation of storms under climate change. Nat Geosci.  https://doi.org/10.1038/s41561-017-0001-8 CrossRefGoogle Scholar
  77. Taylor KER, Stouffer J, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  78. Trigo IF, Davies TD, Bigg GR (1999) Objective climatology of cyclones in the Mediterranean region. J Clim 12:1685–1696CrossRefGoogle Scholar
  79. Tsidulko M, Krichak SO, Alpert P, Kakaliagou O, Kallos G, Papadopoulos A (2002) Numerical study of a very intensive eastern Mediterranean dust storm, 13–16 March 1998. J Geophys Res 107(D21):4581.  https://doi.org/10.1029/2001JD001168 CrossRefGoogle Scholar
  80. Ulbrich U, Leckebusch GC, Pinto JG (2009) Extra-tropical cyclones in the present and future climate: a review. Theor Appl Climatol 96:117–131.  https://doi.org/10.1007/s00704-008-0083-8 CrossRefGoogle Scholar
  81. Van-Vuuren DP, Edmonds JA, Kainuma M, Riahi K, Weyant J (2011) A special issue on the RCPs. Clim Change 109:1–4.  https://doi.org/10.1007/s10584-011-0157-y CrossRefGoogle Scholar
  82. Velasquez JA, Troin M, Caya D, Brissette F (2015) Evaluating the time-invariance hypothesis of climate model bias correction: implications for hydrological impact studies. J Hydrometeorol 16:2013–2026.  https://doi.org/10.1175/JHM-D-14-0159.1 CrossRefGoogle Scholar
  83. Warner TT (2011) Quality assurance in atmospheric modeling. Bull Am Meteorol Soc 92:1601–1610.  https://doi.org/10.1175/BAMS-D-11-00054 CrossRefGoogle Scholar
  84. Wilks DS (2011) Statistical methods in the atmospheric sciences. Academic Press, San DiegoGoogle Scholar
  85. Yates DS, Gangopadhyay BR, Strzepek K (2003) A technique for generating regional climate scenarios using a nearest neighbor algorithm. Water Resour Res 39(7):1199.  https://doi.org/10.1029/2002WR001769 CrossRefGoogle Scholar
  86. Young K (1994) A multivariate chain model for simulating climatic parameters from daily data. J Appl Meteorol 33(6):661–671CrossRefGoogle Scholar
  87. Zangvil A, Karas S, Sasson A (2003) Connection between Eastern Mediterranean seasonal mean 500 hPa height and sea-level pressure patterns and the spatial rainfall distribution over Israel. Int J Climatol 23:1567–1576CrossRefGoogle Scholar
  88. Zappa G, Hawcroft MK, Shaffrey L, Back E, Brayshaw D (2015) Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Clim Dyn 45:1727–1738.  https://doi.org/10.1007/s00382-014-2426-8 CrossRefGoogle Scholar
  89. Ziv B, Harpaz T, Saaroni H (2015) A new methodology for identifying daughter cyclogenesis—application for the Mediterranean Basin. Int J Climatol 35(13):3847–3861CrossRefGoogle Scholar
  90. Zorita E, von Storch H (1999) The analog method—a simple statistical downscaling technique: comparison with more complicated methods. J Clim 12:2474–2489CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Tropospheric Research, Institute of Meteorology and Climate ResearchKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  2. 2.Department of Geophysics, Porter School of the Environment and Earth SciencesTel-Aviv UniversityTel-AvivIsrael
  3. 3.Department of Applied Mathematics, Environmental Sciences DivisionIsrael Institute for Biological ResearchNess-ZionaIsrael
  4. 4.Department of Geography and the Human–Environment, Porter School of the Environment and Earth SciencesTel-Aviv UniversityTel-AvivIsrael
  5. 5.Department of Earth SciencesUppsala UniversityUppsalaSweden
  6. 6.Department of Meteorology and Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden

Personalised recommendations