Climate Dynamics

, Volume 54, Issue 1–2, pp 435–455 | Cite as

On the performance of twentieth century reanalysis products for Antarctic snow accumulation

  • Yetang WangEmail author
  • Shugui Hou
  • Minghu Ding
  • Weijun Sun


The strengths and weakness of the Twentieth-Century Reanalysis (20CR), the Pilot reanalysis of the twentieth-century (ERA-20C), a coupled twentieth-century climate reanalysis product (CERA-20C), and an ensemble of ten twentieth-century atmospheric model integrations (ERA-20CM), are examined for Antarctic snow accumulation based on 3265 Antarctic multi-year averaged surface mass balance observations and 79 ice core snow accumulation time series, which provides an independent estimate because they are not assimilated into the reanalyses and not used to force ERA-20CM. The ECMWF “Interim” reanalysis (ERA-Interim) and two regional climate models (RACMO2 and MAR) are also used as a complementary analysis. Despite the magnitude discrepancy between simulations and observations, large-scale spatial variability in multi-year averaged snow accumulation observations are reasonably well reproduced by all the twentieth century datasets. The four datasets capture a large fraction (> 40%) of the interannual variability in the ice core snow accumulation composite over the Antarctic Peninsula from 1901 to 2010. However, none of the twentieth century datasets alone is able to explain > 20% of variance in ice core records at the other Antarctic regions during the twentieth century. Even for the modern satellite era (from 1979 onwards), their performance for Antarctic snow accumulation is still poorer, relative to ERA-Interim, RACMO2 and MAR. Considerable inhomogeneities and spurious changes in atmospheric circulation are found in these datasets, and thus the precipitation minus evaporation/sublimation (P–E) changes and trends during the past 100 years are largely artificial over Antarctica.


Antarctic Ice Sheet Reanalysis assessment Precipitation minus evaporation In-situ observations 



This work was supported by the National Natural Science Foundation of China (41971081 and 41576182), the Strategic Priority Research Program of the Chinese Academy of Sciences (XAD19070103), and the Outstanding Youth Fund of Shandong Provincial Universities (ZR2016JL030). We thank the two anonymous referees for their constructive and thoughtful comments to improve this paper. Thanks to the ECMWF Data Center for providing the CERA-20C, ERA-20C, ERA-20CM and ERA-Interim datasets, and to NOAA’s Earth System Research Lab for providing the 20CR dataset. RACMO2.3p2 snow accumulation data come from M. R. van de Broeke and J. M. van Wessem. The output of MAR snow accumulation fields data is available at We are also grateful to Elisabeth Schlosser and Elizabeth R. Thomas for improving English.

Supplementary material

382_2019_5008_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1243 kb)


  1. Agosta C, Amory C, Kittel C, Orsi A, Favier V, Gallée H, van den Broeke MR, Lenaerts JTM, van Wessem JM, van de Berg WJ, Fettweis X (2019) Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. The Cryosphere 13:281–296Google Scholar
  2. Arthern RJ, Winebrenner DP, Vaughan DG (2006) Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission. J Geophys Res 111:D06107Google Scholar
  3. Bromwich DH, Nicolas JP, Monaghan AJ (2011) An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J Clim 24:4189–4209Google Scholar
  4. Compo GP, Whitaker JS, Sardeshmukh PD (2006) Feasibility of a 100-year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87:175–190Google Scholar
  5. Compo GP et al (2010) International surface pressure databank (ispdv2). Research data archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory.
  6. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Bronnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli O, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meterol Soc 137:1–28Google Scholar
  7. De Ridder K, Gallée H (1998) Land surface-induced regional climate change in Southern Israel. J Appl Meteorol 37:1470–1485Google Scholar
  8. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597Google Scholar
  9. Eisen O, Frezzotti M, Genthon C, Isaksson E, Magand O, van den Broeke MR, Dixon DA, Ekaykin A, Holmlund P, Kameda T, Karlöf L, Kaspari S, Lipenkov VY, Oerter H, Takahashi S, Vaughan DG (2008) Ground-based measurements of spatial and temporal variability of snow accumulation in East Antarctica. Rev Geophys 46:RG2001Google Scholar
  10. Ekaykin AA, Hondoh T, Lipenkov VY, Miyamoto A (2009) Post-depositional changes in snow isotope content: preliminary results of laboratory experiments. Clim Past Discuss 5:2239–2267Google Scholar
  11. Ettema J, van den Broeke MR, Meijgaard EV, van de Berg WJ, Box JE, Steffen K (2010) Climate of the Greenland ice sheet using a high-resolution climate model: part 1—evaluation. The Cryosphere 4:511–527Google Scholar
  12. Favier V, Agosta C, Parouty S, Durand G, Delaygue G, Gallée H, Drouet A-S, Trouvilliez A, Krinner G (2013) An updated and quality controlled surface mass balance dataset for Antarctica. The Cryosphere 7:583–597Google Scholar
  13. Feng X, Haines K, de Boisséson E (2018) Coupling of surface air and sea surface temperatures in the CERA-20C reanalysis. Q J R Meteorol Soc 144:195–207Google Scholar
  14. Ferguson CR, Villarini G (2014) An evaluation of the statistical homogeneity of the twentieth century reanalysis. Clim Dyn 42:2841–2866Google Scholar
  15. Fettweis X, Box JE, Agosta C, Amory C, Kittel C, Lang C, van As D, Machguth H, Gallée H (2017) Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. The Cryosphere 11:1015–1033Google Scholar
  16. Fogt RL, Goergens CA, Jones ME, Witte GA, Lee MY, Jone JM (2016a) Antarctic station-based seasonal pressure reconstructions since 1905: 1. Reconstruction evaluation. J Geophys Res Atmos 121:2814–2835Google Scholar
  17. Fogt RL, Jones ME, Goergens CA, Jones ME, Witte GA, Lee MY (2016b) Antarctic station-based seasonal pressure reconstructions since 1905: 2. Variability and trends during the twentieth century. J Geophys Res Atmos 121:2836–2856Google Scholar
  18. Frezzotti M, Urbini S, Proposito M, Scarchilli C, Gandolfi S (2007) Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica. J Geophys Res 112:F02032Google Scholar
  19. Frezzotti M, Scarchilli C, Becagli S, Proposito M, Urbini S (2013) A synthesis of the Antarctic surface mass balance during the last 800 yr. The Cryosphere 7:303–319Google Scholar
  20. Fujita K, Abe O (2006) Stable isotopes in daily precipitation at Dome Fuji, East Antarctica. Geophys Res Lett 33:L18503Google Scholar
  21. Gallée H (1995) Simulation of the mesocyclonic activity in the Ross Sea, Antarctica. Mon Weather Rev 123:2051–2069Google Scholar
  22. Hanna E, Huybrechts P, Cappelen J, Steffen K, Bales R, Burgess E, McConnell J, Steffensen JP, Van den Broeke M, Wake L, Bigg B, Griffiths M, Savas D (2011) Greenland Ice Sheet surface mass balance 1870 to 2010 based on twentieth century reanalysis, and links with global climate forcing. J Geophys Res 116:D24121Google Scholar
  23. Hersbach H, Peubey C, Simmons A, Berrisford P, Poli P, Dee D (2015) ERA-20CM: a twentieth-century atmospheric model ensemble. Q J R Meteorol Soc 141:2350–2375Google Scholar
  24. Hirahara S, Ishii M, Fukuda Y (2014) Centennial-scale sea surface temperature analysis and its uncertainty. J Clim 27:57–75Google Scholar
  25. Huai BJ, Wang YT, Ding MH, Zhang JL, Dong X (2019) An assessment of recent global atmospheric reanalyses for Antarctic near surface air temperature. Atmos Res 226:181–191Google Scholar
  26. Hwang Y-T, Frierson D, Kang S (2013) Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys Res Lett 40:2845–2850Google Scholar
  27. Kameda T, Motoyama H, Fujita S, Takahashi S (2008) Temporal and spatial variability of surface mass balance at Dome Fuji, East Antarctica, by the stake method from 1995 to 2006. J Glaciol 54:107–116Google Scholar
  28. Kuipers Munneke P, van den Broeke MR, Lenaerts JTM, Flanner MG, Gardner AS, van de Berg WJ (2011) A new albedo parameterization for use in climate models over the Antarctic ice sheet. J Geophys Res Atmos 116:F04018Google Scholar
  29. Laloyaux P, Balmaseda M, Dee D, Mogensen K, Janssen P (2016) A coupled data assimilation system for climate reanalysis. Q J R Meteorol Soc 142:65–78Google Scholar
  30. Laloyaux P, de Boisseson E, Balmaseda M, Bidlot J-R, Broennimann S, Buizza R, Dalhgren P, Dee D, Haimberger L, Hersbach H, Kosaka Y, Martin M, Poli P, Rayner N, Rustemeier E, Schepers D (2018) CERA-20C: a coupled reanalysis of the twentieth century. J Adv Model Earth Syst 10:1172–1195Google Scholar
  31. Lenaerts JTM, van den Broeke MR, Déry S, van Meijgaard E, van de Berg WJ, Palm SP, Rodrigo J (2012) Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation. J Geophys Res 117:D05108Google Scholar
  32. Monaghan AJ, Bromwich DH, Fogt RL, Wang S-H, Mayewski PA, Dixon DA, Ekaykin A, Frezzotti M, Goodwin I, Isaksson E, Kaspari SD, Morgan VI, Oerter H, Van Ommen TD, Van der Veen CJ, Wen J (2006) Insignificant change in Antarctic snowfall since the international geophysical year. Science 313:827–831Google Scholar
  33. Morcrette J-J (2002) Assessment of the ecmwf model cloudiness and surface radiation fields at the ARM SGP site. Mon Weather Rev 130:257–277Google Scholar
  34. Poli P, Hersbach H, Berrisford P, Dee D, Simmons A, Laloyaux P (2015) ERA-20C deterministic. ECMWF ERA report series, ECMWF, Shinfield Park, Reading, vol 48, p 20Google Scholar
  35. Poli P, Hersbach H, Dee D, Berrisford P, Simmons A, Vitart F, Laloyaux P, Tan D, Peubey C, Thépaut J, Trémolet Y, Holm E, Bonavita M, Isaksen L, Fisher M (2016) ERA-20C: an atmospheric reanalysis of the 20th century. J Clim 29:4083–4097Google Scholar
  36. Schlosser E, Powers JG, Duda MG, Manning KW (2011) Interaction between Antarctic sea ice and synoptic activity in the circumpolar trough- implications for ice core interpretation. Ann Glaciol 52:9–17Google Scholar
  37. Schneider DP, Fogt RL (2018) Artifacts in century-length atmospheric and coupled reanalyses over Antarctica due to historical data availability. Geophys Res Lett 45:964–973Google Scholar
  38. Seager R, Naik N (2012) A mechanisms-based approach to detecting recent anthropogenic hydroclimate change. J Clim 25:236–261Google Scholar
  39. Sørensen MW (2012) Evaluation of the 20th century reanalysis for the Greenland area. M.Sc. thesis, University of CopenhagenGoogle Scholar
  40. Stachnik JP, Schumacher C (2011) A comparison of the Hadley circulation in modern reanalysis. J Geophys Res 116:D22102Google Scholar
  41. Stenni B, Curran MAJ, Abram NJ, Orsi A, Goursaud S, Masson-Delmotte V, Neukom R, Goosse H, Divine D, van Ommen T, Steig EJ, Dixon DA, Thomas ER, Bertler NAN, Isaksson E, Ekaykin A, Werner M, Frezzotti M (2017) Antarctic climate variability on regional and continental scales over the last 2000 years. Clim Past 13:1609–1634Google Scholar
  42. Taylor K, Stouffer R, Meehl G (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498Google Scholar
  43. Thomas ER, Hosking JS, Tuckwell RR, Warren RA, Ludlow EC (2015) Twentieth century increase in snowfall in coastal West Antarctica. Geophys Res Lett 42:9387–9393Google Scholar
  44. Thomas ER, van Wessem J, Roberts J, Isaksson E, Schlosser E, Fudge TJ, Vallelonga P, Medley B, Lenaerts JTM, Bertler N, van den Broeke MR, Dixon DA, Frezzotti M, Stenni B, Curran M, Ekaykin AA (2017) Regional Antarctic snow accumulation over the past 1000 years. Clim Past 13:1491–1513Google Scholar
  45. Titchner HA, Rayner NA (2014) The met office hadley centre sea ice and sea-surface temperature data set, version 2: 1. Sea ice concentrations. J Geophys Res 119:2864–2889Google Scholar
  46. Van de Berg WJ, Van den Broeke MR, Reijmer C, Van Meijgaard E (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J Geophys Res 111:D11104Google Scholar
  47. Van Wessem JM, van de Berg WJ, Noël BPY, van Meijgaard E, Birnbaum G, Jakobs CL, Krüger K, Lenaerts JTM, Lhermitte S, Ligtenberg SRM, Medley B, Reijmer CH, van Tricht K, Trusel LD, van Ulft LH, Wouters B, Wuite J, van den Broeke MR (2018) Modelling the climate and surface mass balance of polar ice sheets using RACMO2, part 2: Antarctica (1979–2016). The Cryosphere 12:1479–1498Google Scholar
  48. Vaughan DG, Bamber JL, Giovinetto M, Russell J, Cooper APR (1999) Reassessment of net surface mass balance in Antarctica. J Clim 12:933–946Google Scholar
  49. Wang Y, Ding M, van Wessem J, Schlosser E, Altnau S, van den Broeke MR, Lenaerts JTM, Thomas ER, Isaksson E, Wang J, Sun W (2016) A comparison of Antarctic Ice Sheet surface mass balance from atmospheric climate models and in situ observations. J Clim 29:5317–5337Google Scholar
  50. Wang Y, Thomas ER, Hou S, Huai B, Wu S, Sun W, Qi S, Ding M, Zhang Y (2017) Snow accumulation variability over the West Antarctic Ice Sheet since 1900: a comparison of ice core records with ERA-20C reanalysis. Geophys Res Lett 44:11482–11490Google Scholar
  51. Whitaker JS, Hamill TM (2002) Ensemble data assimilation without perturbed observations. Mon Weather Rev 130:1913–1924Google Scholar
  52. Whitaker JS, Compo GP, Wei X, Hamill TM (2004) Reanalysis without radiosondes using ensemble data assimilation. Mon Weather Rev 132:1190–1200Google Scholar
  53. Woodruff SD, Worley SJ, Lubker SJ, Ji Z, Freeman JE, Berry DI, Brohan P, Kent EC, Reynolds RW, Smith SR, Wilkinson C (2011) Icoads release 2.5: extensions and enhancements to the surface marine meteorological archive. Int J Climatol 31:951–967Google Scholar
  54. Zhang Y, Wang Y, Huai B, Ding M, Sun W (2018) Skill of the two 20th century reanalyses in representing Antarctic near-surface air temperature. Int J Climatol 38:4225–4238Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Geography and EnvironmentShandong Normal UniversityJinanChina
  2. 2.MOE, Key Laboratory for Coast and Island Development, School of Geographic and Oceanographic SciencesNanjing UniversityNanjingChina
  3. 3.Institute of Tibetan Plateau and Polar MeteorologyChinese Academy of Meteorological SciencesBeijingChina

Personalised recommendations