Advertisement

Projected late 21st century changes to the regional impacts of the El Niño-Southern Oscillation

  • S. J. PerryEmail author
  • S. McGregor
  • A. Sen Gupta
  • M. H. England
  • N. Maher
Article

Abstract

As the dominant driver of interannual climate variability globally, any changes in the remote impacts of the El Niño-Southern Oscillation (ENSO) due to climate change are of considerable importance. Here we assess whether climate models from Phase 5 of the Coupled Model Intercomparison Project (CMIP5) project robust changes in ENSO’s regional temperature and precipitation teleconnections in the late 21st century, comparing the historical simulations (between 1950 and 1999) and high-emission future simulations (between 2040 and 2089). In order to quantify the importance of internal variability in these projected changes, we examine an ensemble of coupled model simulations from the Max-Planck-Institute Grand Ensemble (MPI-GE). Except for a few regions, the changes in ENSO’s temperature and precipitation teleconnections for most regions are not significant across the majority of models. Exceptions include consistent projected changes to temperature teleconnections over equatorial South America and East Africa, which are robust during La Niña events. Despite this, by assessing all regions together, a significant amplification of the temperature teleconnections is identified for La Niña events. Additionally, we find an overall projected weakening relative to the historical precipitation teleconnection when analysis is limited to regions that correctly reproduce the observed precipitation teleconnections. It remains unclear to what extent a change in regional ENSO teleconnections will be apparent, as it is clear that the changes in ENSO’s teleconnections are relatively small compared to the regional variability during the historical period.

Keywords

El Niño-Southern Oscillation Teleconnections Future projections 

Notes

Acknowledgements

We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling and the climate modelling groups (listed in Fig. 1) for producing and making available CMIP5 model output, and the Max Planck Institute for Meteorology for the MPI-GE output used in this research. This research was supported by the Australian Research Council (ARC) including the ARC Centre of Excellence for Climate System Science and ARC Centre of Excellence for Climate Extremes. We thank the anonymous reviewers for their constructive feedback that has improved this research.

Supplementary material

382_2019_5006_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1579 kb)

References

  1. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res Ocean 112:1–27.  https://doi.org/10.1029/2006JC003798 CrossRefGoogle Scholar
  2. Balas N, Nicholson SE, Klotter D (2007) The relationship of rainfall variability in West Central Africa to sea-surface temperature fluctuations. Int J Climatol 27:1335–1349.  https://doi.org/10.1002/joc.1456 CrossRefGoogle Scholar
  3. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018.  https://doi.org/10.1007/s00382-013-1783-z CrossRefGoogle Scholar
  4. Bittner M, Schmidt H, Timmreck C, Sienz F (2016) Using a large ensemble of simulations to assess the Northern Hemisphere stratospheric dynamical response to tropical volcanic eruptions and its uncertainty. Geophys Res Lett 43:9324–9332.  https://doi.org/10.1002/2016GL070587 CrossRefGoogle Scholar
  5. Bonfils CJW, Santer BD, Phillips TJ, Marvel K, Ruby Leung L, Doutriaux C, Capotondi A (2015) Relative contributions of mean-state shifts and ENSO-driven variability to precipitation changes in a warming climate. J Clim 28:9997–10013.  https://doi.org/10.1175/JCLI-D-15-0341.1 CrossRefGoogle Scholar
  6. Brands S (2017) Which ENSO teleconnections are robust to internal atmospheric variability? Geophys Res Lett 44:1483–1493.  https://doi.org/10.1002/2016GL071529 CrossRefGoogle Scholar
  7. Cai W et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Chang 4:111–116.  https://doi.org/10.1038/nclimate2100 CrossRefGoogle Scholar
  8. Cai W et al (2015a) ENSO and greenhouse warming. Nat Clim Chang 5:849–859.  https://doi.org/10.1038/nclimate2743 CrossRefGoogle Scholar
  9. Cai W et al (2015b) Increased frequency of extreme La Niña events under greenhouse warming. Nat Clim Chang 5:132–137.  https://doi.org/10.1038/nclimate2492 CrossRefGoogle Scholar
  10. Camberlin P, Chauvin F, Douville H, Zhao Y (2004) Simulated ENSO-tropical rainfall teleconnections in present-day and under enhanced greenhouse gases conditions. Clim Dyn 23:641–657.  https://doi.org/10.1007/s00382-004-0460-7 CrossRefGoogle Scholar
  11. Capotondi A, Ham Y, Wittenberg A, Kug J (2015) Climate model biases and El Niño Southern Oscillation (ENSO) simulation. US Clivar Var 13:21–25Google Scholar
  12. Chen C, Cane MA, Wittenberg AT, Chen D (2017) ENSO in the CMIP5 simulations: life cycles, diversity, and responses to climate change. J Clim 30:775–801.  https://doi.org/10.1175/JCLI-D-15-0901.1 CrossRefGoogle Scholar
  13. Chiang JCH, Sobel AH (2002) Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J Clim 15:2616–2631.  https://doi.org/10.1175/1520-0442(2002)015%3c2616:TTTVCB%3e2.0.CO;2 CrossRefGoogle Scholar
  14. Choi KY, Vecchi GA, Wittenberg AT (2015) Nonlinear zonal wind response to ENSO in the CMIP5 models: roles of the zonal and meridional shift of the ITCZ/SPCZ and the simulated climatological precipitation. J Clim 28:8556–8573.  https://doi.org/10.1175/JCLI-D-15-0211.1 CrossRefGoogle Scholar
  15. Chou C, Neelin JD (2004) Mechanisms of global warming impacts on regional tropical precipitation. J Clim 17:2688–2701.  https://doi.org/10.1175/1520-0442(2004)017%3c2688:MOGWIO%3e2.0.CO;2 CrossRefGoogle Scholar
  16. Chung CTY, Power SB, Arblaster JM, Rashid HA, Roff GL (2014) Nonlinear precipitation response to El Nino and global warming in the Indo-Pacific. Clim Dyn 42:1837–1856.  https://doi.org/10.1007/s00382-013-1892-8 CrossRefGoogle Scholar
  17. Collins M et al (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3:391–397.  https://doi.org/10.1038/ngeo868 CrossRefGoogle Scholar
  18. Dai N, Arkin PA (2017) Twentieth century ENSO-related precipitation mean states in twentieth century reanalysis, reconstructed precipitation and CMIP5 models. Clim Dyn 48:3061–3083.  https://doi.org/10.1016/j.tifs.2016.11.001 CrossRefGoogle Scholar
  19. Deser C, Simpson IR, McKinnon KA, Phillips AS (2017) The Northern Hemisphere extratropical atmospheric circulation response to ENSO: how well do we know it and how do we evaluate models accordingly? J Clim 30:5059–5082.  https://doi.org/10.1175/JCLI-D-16-0844.1 CrossRefGoogle Scholar
  20. Dezfuli AK, Nicholson SE (2013) The relationship of rainfall variability in western equatorial Africa to the tropical oceans and atmospheric circulation. part II: the boreal autumn. J Clim 26:66–84.  https://doi.org/10.1175/JCLI-D-11-00686.1 CrossRefGoogle Scholar
  21. Diaz HF, Hoerling MP, Eischeid JK (2001) ENSO variability, teleconnections and climate change. Int J Climatol 21:1845–1862.  https://doi.org/10.1002/joc.631 CrossRefGoogle Scholar
  22. Dieppois B, Rouault M, New M (2015) The impact of ENSO on Southern African rainfall in CMIP5 ocean atmosphere coupled climate models. Clim Dyn 45:2425–2442.  https://doi.org/10.1007/s00382-015-2480-x CrossRefGoogle Scholar
  23. Fasullo JT, Otto-Bliesner BL, Stevenson S (2018) ENSO’s changing influence on temperature, precipitation, and wildfire in a warming climate. Geophys Res Lett 45:9216–9225.  https://doi.org/10.1029/2018GL079022 CrossRefGoogle Scholar
  24. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Quart J R Met Soc 106:447–462CrossRefGoogle Scholar
  25. Giorgetta MA et al (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5:572–597.  https://doi.org/10.1002/jame.20038 CrossRefGoogle Scholar
  26. Grimm AM (2011) Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stoch Environ Res Risk Assess 25:537–554.  https://doi.org/10.1007/s00477-010-0420-1 CrossRefGoogle Scholar
  27. Herceg Bulić I, Branković Č, Kucharski F (2012) Winter ENSO teleconnections in a warmer climate. Clim Dyn 38:1593–1613.  https://doi.org/10.1007/s00382-010-0987-8 CrossRefGoogle Scholar
  28. Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the southern oscillation. Mon Weather Rev 110:1495–1496.  https://doi.org/10.1175/1520-0493(1982)110%3c1495:COSAPA%3e2.0.CO;2 CrossRefGoogle Scholar
  29. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196.  https://doi.org/10.1175/1520-0469(1981)038%3c1179:TSLROA%3e2.0.CO;2 CrossRefGoogle Scholar
  30. Hu K, Huang G, Zheng XT, Xie SP, Qu X, Du Y, Liu L (2014) Interdecadal variations in ENSO influences on northwest Pacific-East Asian early summertime climate simulated in CMIP5 models. J Clim 27:5982–5998.  https://doi.org/10.1175/JCLI-D-13-00268.1 CrossRefGoogle Scholar
  31. Huang P (2016) Time-varying response of ENSO-induced tropical pacific rainfall to global warming in CMIP5 models. part I: multimodel ensemble results. J Clim 29:5763–5778.  https://doi.org/10.1175/JCLI-D-16-0058.1 CrossRefGoogle Scholar
  32. Huang P, Xie S-P (2015) Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate. Nat Geosci 8:1–13.  https://doi.org/10.1038/ngeo2571 CrossRefGoogle Scholar
  33. Intergovernmental Panel on Climate change (IPCC) (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, Cambridge, p 582Google Scholar
  34. Joseph R, Nigam S (2006) ENSO evolution and teleconnections in IPCC’s twentieth-century climate simulations: realistic representation? J Clim 19:4360–4377.  https://doi.org/10.1175/JCLI3846.1 CrossRefGoogle Scholar
  35. Jungclaus JH et al (2013) Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-earth system model. J Adv Model Earth Syst 5:422–446.  https://doi.org/10.1002/jame.20023 CrossRefGoogle Scholar
  36. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471.  https://doi.org/10.1175/1520-0477(1996)077%3c0437:TNYRP%3e2.0.CO;2 CrossRefGoogle Scholar
  37. Kim S, Son HY, Kug JS (2016) How well do climate models simulate atmospheric teleconnections over the North Pacific and East Asia associated with ENSO?. Clim Dyn 48:1–15.  https://doi.org/10.1007/s00382-016-3121-8 CrossRefGoogle Scholar
  38. Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932.  https://doi.org/10.1175/1520-0442(1999)012%3c0917:RSSTVD%3e2.0.CO;2 CrossRefGoogle Scholar
  39. Kug JS, Il An S, Ham YG, Kang IS (2010) Changes in El Niño and La Niña teleconnections over North Pacific-America in the global warming simulations. Theor Appl Climatol 100:275–282.  https://doi.org/10.1007/s00704-009-0183-0 CrossRefGoogle Scholar
  40. Langenbrunner B, Neelin JD (2013) Analyzing ENSO teleconnections in CMIP models as a measure of model fidelity in simulating precipitation. J Clim 26:4431–4446.  https://doi.org/10.1175/JCLI-D-12-00542.1 CrossRefGoogle Scholar
  41. Latif M et al (2001) ENSIP: the El Nino simulation intercomparison project. Clim Dyn 18:255–276.  https://doi.org/10.1007/s003820100174 CrossRefGoogle Scholar
  42. Maher N, Matei D, Milinski S, Marotzke J (2018) ENSO change in climate projections: forced response or internal variability?. Res Lett, Geophys.  https://doi.org/10.1029/2018GL079764 CrossRefGoogle Scholar
  43. Maher N et al (2019) The Max Planck Institute grand ensemble: enabling the exploration of climate system variability. J Adv Model Earth Syst 11:2050–2069.  https://doi.org/10.1029/2019MS001639 CrossRefGoogle Scholar
  44. Maidment RI, Allan RP, Black E (2015) In precipitation over Africa. Geophys Res Lett 42:1–10.  https://doi.org/10.1002/2015GL065765.Received CrossRefGoogle Scholar
  45. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740–1745.  https://doi.org/10.1126/science.1132588 CrossRefGoogle Scholar
  46. Meehl GA, Teng H (2007) Multi-model changes in El Niño teleconnections over North America in a future warmer climate. Clim Dyn 29:779–790.  https://doi.org/10.1007/s00382-007-0268-3 CrossRefGoogle Scholar
  47. Oh J-H, Shin DW, Cocke SD, Baigorria GA (2014) ENSO teleconnection pattern changes over the Southeastern United States under a climate change scenario in CMIP5 models. Adv Meteorol 2014:1–16.  https://doi.org/10.1155/2014/648197 CrossRefGoogle Scholar
  48. Parhi P, Giannini A, Gentine P, Lall U (2016) Resolving contrasting regional rainfall responses to EL Niño over tropical Africa. J Clim 29:1461–1476.  https://doi.org/10.1175/JCLI-D-15-0071.1 CrossRefGoogle Scholar
  49. Perry SJ, McGregor S, Sen Gupta A, England MH (2017) Future changes to El Niño-Southern oscillation temperature and precipitation teleconnections. Geophys Res Lett 44:10608–10616.  https://doi.org/10.1002/2017GL074509 CrossRefGoogle Scholar
  50. Polade SD, Gershunov A, Cayan DR, Dettinger MD, Pierce DW (2013) Natural climate variability and teleconnections to precipitation over the Pacific-North American region in CMIP3 and CMIP5 models. Geophys Res Lett 40:2296–2301.  https://doi.org/10.1002/grl.50491 CrossRefGoogle Scholar
  51. Power SB, Delage FPD (2018) El Niño-Southern oscillation and associated climatic conditions around the world during the latter half of the twenty-first century. J Clim 31:6189–6207.  https://doi.org/10.1175/JCLI-D-18-0138.1 CrossRefGoogle Scholar
  52. Power SB, Delage F, Colman R, Moise A (2012) Consensus on twenty-first-century rainfall projections in climate models more widespread than previously thought. J Clim 25:3792–3809.  https://doi.org/10.1175/JCLI-D-11-00354.1 CrossRefGoogle Scholar
  53. Power S, Delage F, Chung C, Kociuba G, Keay K (2013) Robust twenty-first-century projections of El Niño and related precipitation variability. Nature 502:541–545.  https://doi.org/10.1038/nature12580 CrossRefGoogle Scholar
  54. Rodgers KB, Lin J, Frölicher TL (2015) Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences 12:3301–3320.  https://doi.org/10.5194/bg-12-3301-2015 CrossRefGoogle Scholar
  55. Seager R, Naik N, Vogel L (2012) Does global warming cause intensified interannual hydroclimate variability? J Clim 25:3355–3372.  https://doi.org/10.1175/JCLI-D-11-00363.1 CrossRefGoogle Scholar
  56. Steinhoff DF, Monaghan AJ, Clark MP (2014) Projected impact of twenty-first century ENSO changes on rainfall over Central America and northwest South America from CMIP5 AOGCMs. Clim Dyn 44:1329–1349.  https://doi.org/10.1007/s00382-014-2196-3 CrossRefGoogle Scholar
  57. Sterl A, van Oldenborgh GJ, Hazeleger W, Burgers G (2007) On the robustness of ENSO teleconnections. Clim Dyn 29:469–485.  https://doi.org/10.1007/s00382-007-0251-z CrossRefGoogle Scholar
  58. Stevens B (2015) Rethinking the lower bound on aerosol radiative forcing. J Clim 28:4794–4819.  https://doi.org/10.1175/JCLI-D-14-00656.1 CrossRefGoogle Scholar
  59. Stevenson S, Fox-Kemper B, Jochum M, Rajagopalan B, Yeager SG (2010) ENSO model validation using wavelet probability analysis. J Clim 23:5540–5547.  https://doi.org/10.1175/2010JCLI3609.1 CrossRefGoogle Scholar
  60. Stevenson S, Fox-Kemper B, Jochum M, Neale R, Deser C, Meehl G (2012) Will there be a significant change to El Niño in the twenty-first century? J Clim 25:2129–2145.  https://doi.org/10.1175/JCLI-D-11-00252.1 CrossRefGoogle Scholar
  61. Su H, Neelin JD (2003) The scatter in tropical average precipitation anomalies*. J Clim 16:3966–3977CrossRefGoogle Scholar
  62. Taschetto AS, England MH (2009) El Niño modoki impacts on Australian rainfall. J Clim 22:3167–3174.  https://doi.org/10.1175/2008JCLI2589.1 CrossRefGoogle Scholar
  63. Taschetto AS, Sen Gupta A, Jourdain NC, Santoso A, Ummenhofer CC, England MH (2014) Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections. J Clim 27:2861–2885.  https://doi.org/10.1175/JCLI-D-13-00437.1 CrossRefGoogle Scholar
  64. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498.  https://doi.org/10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  65. Timmermann A et al (2018) El Niño-Southern oscillation complexity. Nature 559:535–545.  https://doi.org/10.1038/s41586-018-0252-6 CrossRefGoogle Scholar
  66. Todd MC, Washington R (2004) Climate variability in central equatorial Africa: influence from the Atlantic sector. Geophys Res Lett 31:1–4.  https://doi.org/10.1029/2004GL020975 CrossRefGoogle Scholar
  67. Trenberth KE, Kumar A, Karoly D, Ropelewski C, Branstator GW, Lau N-C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res Ocean 103:14291–14324.  https://doi.org/10.1029/97jc01444 CrossRefGoogle Scholar
  68. Van Rensch P, Gallant AJE, Cai W, Nicholls N (2015) Evidence of local sea surface temperatures overriding the southeast Australian rainfall response to the 1997–1998 El Niño. Geophys Res Lett 42:9449–9456.  https://doi.org/10.1002/2015GL066319 CrossRefGoogle Scholar
  69. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340.  https://doi.org/10.1175/JCLI4258.1 CrossRefGoogle Scholar
  70. Vecchi GA, Wittenberg AT (2010) El Niño and our future climate: where do we stand? Wiley Interdiscip Rev Clim Chang 1:260–270.  https://doi.org/10.1002/wcc.33 CrossRefGoogle Scholar
  71. Vijayeta A, Dommenget D (2017) An evaluation of ENSO dynamics in CMIP simulations in the framework of the recharge oscillator model. Clim Dyn 51:1–19.  https://doi.org/10.1007/s00382-017-3981-6 CrossRefGoogle Scholar
  72. Von Storch H, Zwiers F (2003) Statistical analysis in climate research. Cambridge University Press, Cambridge, p 496Google Scholar
  73. Washington R, James R, Pearce H, Pokam WM, Moufouma-Okia W (2013) Congo basin rainfall climatology: can we believe the climate models? Philos Trans R Soc B 368:20120296.  https://doi.org/10.1098/rstb.2012.0296 CrossRefGoogle Scholar
  74. Watanabe M, Kug JS, Jin FF, Collins M, Ohba M, Wittenberg AT (2012) Uncertainty in the ENSO amplitude change from the past to the future. Geophys Res Lett 39:1–7.  https://doi.org/10.1029/2012GL053305 CrossRefGoogle Scholar
  75. Weare BC (2013) El Niño teleconnections in CMIP5 models. Clim Dyn 41:2165–2177.  https://doi.org/10.1007/s00382-012-1537-3 CrossRefGoogle Scholar
  76. Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 36:1–5.  https://doi.org/10.1029/2009GL038710 CrossRefGoogle Scholar
  77. Xie PP, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Amer Meteor Soc 78:2539–2558.  https://doi.org/10.1175/1520-0477(1997)078%3c2539:GPAYMA%3e2.0.CO;2 CrossRefGoogle Scholar
  78. Yeh SW et al (2018) ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev Geophys 56:185–206.  https://doi.org/10.1002/2017RG000568 CrossRefGoogle Scholar
  79. Zhou ZQ, Xie SP, Zheng XT, Liu Q, Wang H (2014) Global warming-induced changes in El Nino teleconnections over the North Pacific and North America. J Clim 27:9050–9064.  https://doi.org/10.1175/JCLI-D-14-00254.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Climate Change Research CentreUniversity of New South WalesSydneyAustralia
  2. 2.School of Earth, Atmosphere, and EnvironmentMonash UniversityMelbourneAustralia
  3. 3.Australian Research Council Centre of Excellence for Climate System ScienceUniversity of New South WalesSydneyAustralia
  4. 4.Australian Research Council Centre of Excellence for Climate ExtremesUniversity of New South WalesSydneyAustralia
  5. 5.Max Planck Institute for MeteorologyHamburgGermany

Personalised recommendations