Advertisement

Projected changes in extreme precipitation events over various subdivisions of India using RegCM4

  • P. K. Rai
  • G. P. SinghEmail author
  • S. K. Dash
Article

Abstract

Present study attempts to project extreme precipitation indices over 34 different meteorological subdivisions and six homogeneous regions such as Northwest, Central Northeast, Northeast, West Central, Peninsular India and Hilly Region during summer monsoon season in the twenty-first century. For this purpose, the Regional Climate Model version4 (RegCM4) had been run at 50 km horizontal resolution forced with the global model GFDL-ESM2 M, during reference period 1976–2005 for the model validation, and the mid- (2031–2060) and far-future (2070–2099) for projections under RCP8.5 scenario over the South Asia CORDEX domain. In this paper, model simulated precipitation has been validated against IMD, APHRODITE and NCEP/NCAR data sets. The results indicate that RegCM4 captures the important features of seasonal precipitation and various extreme indices over the study area. The RegCM4 has projected an increase in the mean seasonal precipitation by 0.56 mm/day whereas in case of GFDL model the rate is 0.39 mm/day during the far-future relative to the reference period. The heavy precipitation indices are projected to increase more frequently (0.264/decade) than the mean precipitation rate (0.01/decade) over India. The correlations between the extreme precipitation indices and the seasonal mean precipitation are found to be strong. In addition, the consecutive dry days are projected to occur more frequently (3–5 days) over West Central (Telangana, Vidarbha and Marathwada) and west Rajasthan while consecutive wet days are projected to decrease over larger parts of India during far-future. Similarly, 1 day maximum precipitation and the simple daily intensity index are projected to increase consistently from mid- to far- futures over some sub-divisions of West coast, Hilly and Northeast regions. From a spatial probability perspective, model projection indicates more frequent severe drought and flood conditions over India.

Keywords

Climate change Extreme precipitation indices Regional climate model RCP8.5 scenario 

Notes

Acknowledgements

Authors acknowledge India Meteorological Department and Asian Precipitation–Highly-Resolved Observational Data Integration Toward Evaluation (APHRODITE) for using their gridded precipitation data sets for model validation and National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis1for validating other parameters of RegCM4. We also want to acknowledge both the reviewers for their constructive comments which help us to improve the quality of the paper.

References

  1. Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321:1481–1484.  https://doi.org/10.1126/science.1160787 CrossRefGoogle Scholar
  2. Ashfaq M, Shi Y, Tung WW, Trapp RJ, Gao X, Pal JS, Diffenbaugh NS (2009) Suppression of south Asian summer monsoon precipitation in the 21st century. Geophys Res Lett 36(1):L01704.  https://doi.org/10.1029/2008GL036500 CrossRefGoogle Scholar
  3. Bhaskaran B, Jones RG, Murphy JM, Noguer M (1996) Simulations of the Indian summer monsoon using a nested regional climate model: domain size experiments. Clim Dyn 12:573–587CrossRefGoogle Scholar
  4. Bookhagen B, Burbank DW (2010) Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J Geophys Res 115:F03019.  https://doi.org/10.1029/2009JF001426 CrossRefGoogle Scholar
  5. Chang HI, Kumar A, Niyogi D, Mohanty UC, Chen F, Dudhia J (2009) The role of land surface processes on the mesoscale simulation of the July 26, 2005 heavy rain event over Mumbai, India. Glob Planet Change 67:87–103.  https://doi.org/10.1016/j.gloplacha.2008.12.005 CrossRefGoogle Scholar
  6. Coppola E, Giorgi F, Raffaele F et al (2014a) Present and future clima-tologies in the phase I CREMA experiment. Clim Chang 125:23–38CrossRefGoogle Scholar
  7. Coppola E, Giorgi F, Raffaele F, Fuentes-Franco R, Giuliani G, Lopart-Pereira ML, Mamgain A, Mariotti L, Diro GT, Torma C (2014b) Present and future climatologies in the phase I CREMA experiment. Clim Change 125(1):23–38CrossRefGoogle Scholar
  8. Das PK, Chakraborty A, Seshasai MVR (2014) Spatial analysis of temporal trend of rainfall and rainy days during the indian summer monsoon season using daily gridded (0.5° × 0.5°) rainfall data for the period of 1971–2005. Meteorol Appl 21:481–493.  https://doi.org/10.1002/met.1361 CrossRefGoogle Scholar
  9. Dash SK, Hunt JCR (2007) Variability of climate change in India. Curr Sci 93(6):782–788Google Scholar
  10. Dash SK, Shekhar MS, Singh GP (2006) Simulation of Indian summer monsoon circulation and rainfall using RegCM3. Theor Appl Climatol 86:161–172.  https://doi.org/10.1007/s00704-006-0204-1 CrossRefGoogle Scholar
  11. Dash SK, Kulkarni MA, Mohanty UC, Prasad K (2009) Changes in the characteristics of rain events in India. J Geophys Res 114:D10109.  https://doi.org/10.1029/2008JD010572 CrossRefGoogle Scholar
  12. Dash SK, Mamgain A, Pattnayak KC, Giorgi F (2013) Spatial and temporal variations in indian summer monsoon rainfall and temperature: an analysis based on RegCM3 simulations. Pure Appl Geophys 170:655–674.  https://doi.org/10.1007/s00024-012-0567-4 CrossRefGoogle Scholar
  13. Dash SK, Mishra SK, Pattnayak KC, Mamgain A, Mariotti L, Coppola E, Giorgi F, Giuliani G (2014) Projected seasonal mean summer monsoon over India and adjoining regions for the twenty-first century. Theor Appl Climatol 122:581–593.  https://doi.org/10.1007/s00704-014-1310-0 CrossRefGoogle Scholar
  14. Deser C, Phillips AS, Alexander MA, Smoliak BV (2014) Projecting North American climate over the next 50 years: uncertainty due to internal variability. J Clim 27:2271–2296.  https://doi.org/10.1175/JCLI-D-13-00451.1 CrossRefGoogle Scholar
  15. Dickinson E, Henderson-Sellers A, Kennedy J (1993) Biosphere-atmosphere transfer scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model. NCAR Tech Rep NCAR/TN-3871STR.  https://doi.org/10.5065/D67W6959 CrossRefGoogle Scholar
  16. Donat MG, Lowry AL, Alexander LV, O’Gorman PA, Maher N (2016) More extreme precipitation in the world’s dry and wet regions. Nat Clim Chang 6:508–513.  https://doi.org/10.1038/nclimate2941 CrossRefGoogle Scholar
  17. Dunne JP, John JG, Adcroft AJ, Griffies SM, Hallberg RW, Shevliakova E, Stouffer RJ, Cooke W, Dunne KA, Harrison MJ, Krasting JP (2012) GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J Clim 25(19):6646–6665CrossRefGoogle Scholar
  18. Elguindi N, Bi X, Giorgi F et al (2011) Regional climate model RegCM user manual. ITCP, Trieste, ItalyGoogle Scholar
  19. Emanuel KA, Zivkovic-Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56:1766–1782.  https://doi.org/10.1175/1520-0469(1999)056%3c1766:DAEOAC%3e2.0.CO;2 CrossRefGoogle Scholar
  20. Fischer EM, Beyerle U, Knutti R (2013) Robust spatially aggregated projections of climate extremes. Nat Clim Change 3:1033–1038.  https://doi.org/10.1038/nclimate2051 CrossRefGoogle Scholar
  21. Frich P, Alexander LV, Della-Marta PM, Gleason B, Haylock M, Tank AK, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212.  https://doi.org/10.3354/cr019193 CrossRefGoogle Scholar
  22. Fritsch JM, Chappell CF (1980) Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization. J Atmos Sci 37(8):1722–1733CrossRefGoogle Scholar
  23. Ghosh S, Vittal H, Sharma T, Karmakar S, Kasiviswanathan KS, Dhanesh Y, Sudheer KP, Gunthe SS (2016) Indian summer monsoon rainfall: implications of contrasting trends in the spatial variability of means and extremes. PLoS One 11:e0158670.  https://doi.org/10.1371/journal.pone.0158670 CrossRefGoogle Scholar
  24. Giorgi F, Huang Y, Nishizawa K, Fu C (1999) A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes. J Geophys Res 104:D66403–D66423.  https://doi.org/10.1029/1998JD200052 CrossRefGoogle Scholar
  25. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29.  https://doi.org/10.3354/cr01018 CrossRefGoogle Scholar
  26. Gorman PAO, Schneider T (2009) The physical basis for increases in precipitation extremes in simulations of 21st century climate change. Proc Natl Acad Sci 106(35):14773–14777.  https://doi.org/10.1073/pnas.0907610106 CrossRefGoogle Scholar
  27. Goswami BN, Venugopal V, Sangupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445.  https://doi.org/10.1126/science.1132027 CrossRefGoogle Scholar
  28. Gramacki A (2018) Studies in big data 37 nonparametric kernel density estimation and its computational aspects. Springer International Publishing, Berlin, pp 1–176CrossRefGoogle Scholar
  29. Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:754–787.  https://doi.org/10.1175/1520-0493(1993)121%3c0764:PEOAUB%3e2.0.CO;2 CrossRefGoogle Scholar
  30. Greve P, Orlowsky B, Mueller B, Sheffield J, Reichstein M, Seneviratne SI (2014) Global assessment of trends in wetting and drying over land. Nat Geosci 7:716–721.  https://doi.org/10.1038/NGEO2247 CrossRefGoogle Scholar
  31. Held IM, Hoskins BJ (1985) Large-scale eddies and the general circulation of the troposphere. Adv Geophys 28:3–31.  https://doi.org/10.1016/S0065-2687(08)60218-6 CrossRefGoogle Scholar
  32. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699.  https://doi.org/10.1175/JCLI3990.1 CrossRefGoogle Scholar
  33. Holtslag AAM, De Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575.  https://doi.org/10.1175/1520-0493(1990)118%3c1561:AHRAMT%3e2.0.CO;2 CrossRefGoogle Scholar
  34. Intergovernmental Panel on Climate Change (IPCC) (2007). In: Solomon S, Qin D, Manning M, Chen Z, Marquis, M, Averyt KB, Tignor M, Miller HL (Eds.), Climate Change (2007):The physical science basis. contribution of working group ito the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  35. Intergovernmental Panel on Climate Change (IPCC) (2012). In: Field CB et al (Eds) Climate change (2012): managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  36. Intergovernmental Panel on Climate Change (IPCC) (2013) In: Stocker TF et al (Eds) Climate change (2013): the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  37. Joseph S, Sahai AK, Sharmila S, Abhilash S, Borah N, Chattopadhyay R, Pillai PA, Rajeevan M, Kumar A (2015) North Indian heavy rainfall event during June 2013: diagnostics and extended range prediction. Clim Dyn 44(7–8):2049–2065.  https://doi.org/10.1007/s00382-014-2291-5 CrossRefGoogle Scholar
  38. Karl TR, Easterling DR (1999) Climate extremes: selected review and future research directions. Clim Change 42:309–325.  https://doi.org/10.1023/A:100543690 CrossRefGoogle Scholar
  39. Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, LondonGoogle Scholar
  40. Kenyon J, Hegerl GC (2010) Influence of modes of climate variability on global precipitation extremes. J Clim 23:6248–6262.  https://doi.org/10.1175/2010JCLI3617.1 CrossRefGoogle Scholar
  41. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Williamson DL, Rasch PJ (1996) Description of the NCAR community climate model (CCM3). NCAR Tech Note NCAR/TN-420 + STR.  https://doi.org/10.5065/D6FF3Q99 CrossRefGoogle Scholar
  42. Kim IW, Oh J, Woo S, Kripalani RH (2018) Evaluation of precipitation extremes over the Asian domain: observation and modelling studies. Clim Dyn.  https://doi.org/10.1007/s00382-018-4193-4 CrossRefGoogle Scholar
  43. Kitoh A, Endo H, Kumar KK, Cavalcanti IF, Goswami P, Zhou T (2013) Monsoons in a changing world: a regional perspective in a global context. J Geophys Res 118(8):3053–3065.  https://doi.org/10.1002/jgrd.50258 CrossRefGoogle Scholar
  44. Klein Tank AMG, Peterson TC, Quadir DA, Dorji S, Zou X, Tang H, Santhosh K, Joshi UR, Jaswal AK, Kolli RK, Sikder AB (2006) Changes in daily temperature and precipitation extremes in central and south Asia. J Geophys Res 111:D16105.  https://doi.org/10.1029/2005JD006316 CrossRefGoogle Scholar
  45. Knutti R, Sedláček J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Change 3:369–373.  https://doi.org/10.1038/nclimate1716 CrossRefGoogle Scholar
  46. Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407.  https://doi.org/10.1038/nature12534 CrossRefGoogle Scholar
  47. Krishnan R, Sabin TP, Ayantika DC, Kitoh A, Sugi M, Murakami H, Turner AG, Slingo JM, Rajendran K (2013) Will the South Asian monsoon overturning circulation stabilize any further? Clim Dyn 40(1–2):187–211.  https://doi.org/10.1007/s00382-012-1317-0 CrossRefGoogle Scholar
  48. Krishnan R, Sabin TP, Vellore R, Mujumdar M, Sanjay J, Goswami BN, Hourdin F, Dufresne JL, Terray P (2016) Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world. Clim Dyn 7(3–4):1007–1027.  https://doi.org/10.1007/s00382-015-2886-5 CrossRefGoogle Scholar
  49. Kulkarni A (2012) Weakening of Indian summer monsoon rainfall in warming environment. Theor Appl Climatol 109:447–459.  https://doi.org/10.1007/s00704-012-0591-4 CrossRefGoogle Scholar
  50. Kumar KK, Patwardhan SK, Kulkarni A, Kamala K, Rao KK, Jones R (2011) Simulated projections for summer monsoon climate over India by a higher solution regional climate model (PRECIS). Curr Sci 101:312–326Google Scholar
  51. Kumar P, Wiltshire A, Mathison C, Asharaf S, Ahrens B, Lucas-Picher P, Christensen JH, Gobiet A, Saeed F, Hagemann S, Jacob D (2013) Downscaled climate change projections with uncertainty assessment over India using a high resolution multi-model approach. Sci Total Environ S18–S30:468–469.  https://doi.org/10.1016/j.scitotenv.2013.01.051 CrossRefGoogle Scholar
  52. Li X, Ting M, Li C, Henderson N (2015) Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J Clim 28:4107–4125.  https://doi.org/10.1175/JCLI-D-14-00559.1 CrossRefGoogle Scholar
  53. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259.  https://doi.org/10.2307/1907187 CrossRefGoogle Scholar
  54. Maurya RKS, Singh GP (2015) Simulation of present-day precipitation over India using a regional climate model. Meteorol Atmos Phys 128:211–228.  https://doi.org/10.1007/s00703-015-0409-x CrossRefGoogle Scholar
  55. Menon A, Levermann A, Schewe J, Lehmann J, Frieler K (2013) Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst Dyn 4:287–300.  https://doi.org/10.5194/esdd-4-1-2013 CrossRefGoogle Scholar
  56. Min S, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381.  https://doi.org/10.1038/nature09763 CrossRefGoogle Scholar
  57. Mishra V, Kumar D, Ganguly AR, Sanjay J, Mujumdar M, Krishnan R, Shah RD (2014) Reliability of regional and global climate models to simulate precipitation extremes over India. J Geophys Re. 119:9301–9323.  https://doi.org/10.1002/2014JD021636 CrossRefGoogle Scholar
  58. Mohan TS, Rajeevan M (2017) Past and future trends of hydroclimatic intensity over the Indian monsoon region. J Geophys Res 122:896–909.  https://doi.org/10.1002/2016JD025301 CrossRefGoogle Scholar
  59. Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105:29579–29594.  https://doi.org/10.1029/2000JD900415 CrossRefGoogle Scholar
  60. Pattanaik DR, Rajeevan M (2010) Variability of extreme rainfall events over India during southwest monsoon season Meteorol Appl 17:88–104.  https://doi.org/10.1002/met.164 CrossRefGoogle Scholar
  61. Pendergrass AG, Knutti R, Lehner F, Deser C, Sanderson BM (2017) Precipitation variability increases in a warmer climate. Sci Rep 7:1–9.  https://doi.org/10.1038/s41598-017-17966-y CrossRefGoogle Scholar
  62. Polson D, Heger GC (2017) Strengthening contrast between precipitation in tropical wet and dry regions. Geophys Res Lett 44:365–373.  https://doi.org/10.1002/2016GL071194 CrossRefGoogle Scholar
  63. Qin P, Xie Z (2016) Detecting changes in future precipitation extremes over eight river basins in China using RegCM4 downscaling. J Geophys Res 121:6802–6821.  https://doi.org/10.1002/2016JD024776 CrossRefGoogle Scholar
  64. Rajeevan M, Bhate J, Kale JD, Lal B (2006) High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr Sci 93(3):296–306Google Scholar
  65. Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys Res Lett 35:L18707.  https://doi.org/10.1029/2008GL035143 CrossRefGoogle Scholar
  66. Ramesh KV, Goswami P (2014) Assessing reliability of regional climate projections: the case of Indian monsoon. Sci Rep 4:4071.  https://doi.org/10.1038/srep04071 CrossRefGoogle Scholar
  67. Rao KK, Patwardhan SK, Kulkarni A, Kamala K, Sabade SS, Kumar KK (2014) Projected changes in mean and extreme precipitation indices over India using PRECIS. Glob Planet Change 113:77–90.  https://doi.org/10.1016/j.gloplacha.2013.12.006 CrossRefGoogle Scholar
  68. Revadekar JV, Patwardhan SK, Rupa Kumar K (2011) Characteristic features of precipitation extremes over India in the warming scenarios. Adv Meteorol 2011(11):138425.  https://doi.org/10.1155/2011/138425 CrossRefGoogle Scholar
  69. Roads J, Chen S, Kanamitsu M (2003) U S regional climate simulations and seasonal forecasts. J Geophys Res 108:1–17.  https://doi.org/10.1029/2002JD002232 CrossRefGoogle Scholar
  70. Roxy MK, Ghosh S, Pathak A, Athulya R, Mujumdar M, Murtugudde R, Terray P, Rajeevan M (2017) A threefold rise in widespread extreme rain events over central India. Nat Commun 8:1–11.  https://doi.org/10.1038/s41467-017-00744-9 CrossRefGoogle Scholar
  71. Roy SS, Balling RC (2004) Trends in extreme daily precipitation indices in India. Int J Climatol 24(4):457–466.  https://doi.org/10.1002/joc.995 CrossRefGoogle Scholar
  72. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63:1379–1389.  https://doi.org/10.1080/01621459.1968.10480934 CrossRefGoogle Scholar
  73. Sengupta A, Rajeevan M (2013) Uncertainty quantification and reliability analysis of CMIP5 projections for the Indian summer monsoon. Curr Sci 105:1692–1703Google Scholar
  74. Sharma S, Mujumdar P (2017) Increasing frequency and spatial extent of concurrent meteorological droughts and heatwaves in India. Scientific reports 7(1):15582CrossRefGoogle Scholar
  75. Shepherd TG (2014) Atmospheric circulation as a source of uncertainty in climate change projections. Nat Geosci 7:703–708.  https://doi.org/10.1038/ngeo2253 CrossRefGoogle Scholar
  76. Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013a) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res 118:1716–1733.  https://doi.org/10.1002/jgrd.50203 CrossRefGoogle Scholar
  77. Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013b) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res 118:2473–2493.  https://doi.org/10.1002/jgrd.50188 CrossRefGoogle Scholar
  78. Silverman BW (1986) Density estimation for statistics and data analysis, monographs on statistics and applied probability. Chapman and Hall, LondonGoogle Scholar
  79. Singh GP, Oh JH (2007) Impact of Indian Ocean sea-surface temperature anomaly on Indian summer monsoon precipitation using a regional climate model. Int J Climatol 27:1455–1465CrossRefGoogle Scholar
  80. Singh D, Tsiang M, Rajaratnam B, Diffenbaugh NS (2014) Observed changes in extreme wet and dry spells during the south Asian summer monsoon season. Nat Clim Change 4:456–461.  https://doi.org/10.1038/nclimate2208 CrossRefGoogle Scholar
  81. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, (eds), IPCC (2007). Climate change 2007: the physical science basis. In: Contribution of Working Group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  82. Stewart SB, Choden K, Fedrigo M, Roxburgh SH, Keena RJ, Nitschke CR (2017) The role of topography and the north Indian monsoon on mean monthly climate interpolation within the Himalayan Kingdom of Bhutan. Int J Climatol 37:897–909.  https://doi.org/10.1002/joc.5045 CrossRefGoogle Scholar
  83. Subash N, Sikka AK (2014) Trend analysis of rainfall and temperature and its relationship over India. Theor Appl Climatol 117(3–4):449–462.  https://doi.org/10.1007/s00704-013-1015-9 CrossRefGoogle Scholar
  84. Sushama L, Said SB, Khaliq MN, Kumar DN, Laprise R (2014) Dry spell characteristics over India based on IMD and APHRODITE datasets. Clim Dyn 43(12):3419–3437CrossRefGoogle Scholar
  85. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192.  https://doi.org/10.1029/2000JD900719 CrossRefGoogle Scholar
  86. Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84(9):1205–1218.  https://doi.org/10.1175/BAMS-84-9-1205 CrossRefGoogle Scholar
  87. Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Change 2:587–595.  https://doi.org/10.1038/nclimate1495 CrossRefGoogle Scholar
  88. Vittal H, Ghosh S, Karmakar S, Pathak A, Murtugudde R (2016) Lack of dependence of indian summer monsoon rainfall extremes on temperature: an observational evidence. Sci Rep 6:1–12.  https://doi.org/10.1038/srep31039 CrossRefGoogle Scholar
  89. Wang B, Ding Q (2006) Changes in global monsoon precipitation over the past 56 years. Geophys Res Lett 33:1–4.  https://doi.org/10.1029/2005GL025347 CrossRefGoogle Scholar
  90. White CJ, McInnes KL, Cechet RP, Corney SP, Grose MR, Holz GK, Katzfey JJ, Bindoff NL (2013) On regional dynamical downscaling for the assessment and projection of temperature and precipitation extremes across Tasmania, Australia. Clim Dyn 41:3145–3165.  https://doi.org/10.1007/s00382-013-1718-8 CrossRefGoogle Scholar
  91. Woo S, Singh GP, Oh JH, Lee KM (2018) Projection of seasonal summer precipitation over Indian sub-continent with a high–resolution AGCM based on the RCP scenarios. Meteorol Atmos Phys 131(4):897–916.  https://doi.org/10.1007/s00703-018-0612-7 CrossRefGoogle Scholar
  92. Xie SP, Deser C, Vecchi GA, Collins M, Delworth TL, Hall A, Hawkins E, Johnson NC, Cassou C, Giannini A, Watanabe M (2015) Towards predictive understanding of regional climate change. Nat Clim Change 5:921–930.  https://doi.org/10.1038/nclimate2689 CrossRefGoogle Scholar
  93. Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) Aphrodite constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteorol Soc 93:1401–1415.  https://doi.org/10.1175/BAMS-D-11-00122.1 CrossRefGoogle Scholar
  94. Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11:2628–2644.  https://doi.org/10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2 CrossRefGoogle Scholar
  95. Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev Clim Change 2:851–870.  https://doi.org/10.1002/wcc.147 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Geophysics, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Centre for Atmospheric SciencesIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations