Advertisement

Climate Dynamics

, Volume 53, Issue 11, pp 7131–7149 | Cite as

Northern Hemisphere land monsoon precipitation changes in the twentieth century revealed by multiple reanalysis datasets

  • Xin Huang
  • Tianjun ZhouEmail author
  • Wenxia Zhang
  • Jie Jiang
  • Puxi Li
  • Yin Zhao
Article

Abstract

Observations are required to understand monsoon changes over time. Reanalyses are useful supplements to observations; however, their ability to reveal long-term monsoon changes remains unknown. Here, we evaluate against observations the performance of two reanalysis datasets covering the whole twentieth century, the ECMWF reanalysis of the twentieth century (ERA20C) and the Twentieth Century Reanalysis Project (20CR), in terms of reproducing the climatological averages, the centennial co-variation, and long-term trends of Northern Hemisphere land monsoon rainfall (NHLMR). Their performance is compared with three other widely used reanalyses, the NCEP–NCAR reanalysis (NCEP1), the ECMWF 40-year reanalysis (ERA40), and the Japanese 55-year Reanalysis Project (JRA55), for the period after 1955. Results show that the five reanalysis datasets reasonably reproduce the climatological NHLMR and NHLM domains. The leading co-variation mode of NHLMR, with an overall increasing tendency before 1955 and a decreasing tendency afterwards, is captured by the corresponding principal components of the two long-term datasets, with some spatial biases. For the long-term precipitation trends, both the ERA20C and 20CR reproduce the increasing trend during 1901–1955, except for parts of the North African (NAF) monsoon region. However, neither dataset captures the decreasing trend of NHLMR after 1955 because of limitations in the NAF and North American (NAM) monsoon region. The NCEP1, ERA40, and JRA55 datasets also have shortcomings in the NAM region. An overall decreasing NHLMR is only shown in the NCEP1 dataset. A moisture budget analysis reveals that the long-term trends of NHLMR are dominated by the dynamic component of moisture convergence, suggesting a prominent role for atmospheric circulation changes. The influence of residual terms related to observations assimilated in the reanalyses is also discussed.

Keywords

Northern Hemisphere land monsoon rainfall Long-term changes Reanalysis data Moisture budget analysis 

Notes

Acknowledgements

This work was supported by the Chinese Academy of Sciences (Grant No. XDA20060102 and 134111KYSB20160031), and the National Natural Science Foundation of China (Grant No. 41330423). We also acknowledge the support from Jiangsu Collaborative Innovation Center for Climate Change.

References

  1. Barriopedro D, Fischer EM, Luterbacher J, Trigo R, Garcia-Herrera R (2011) The Hot Summer of 2010: redrawing the Temperature Record Map of Europe. Science 332(6026):220–224Google Scholar
  2. Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334(6055):502–505Google Scholar
  3. Bosilovich MG, Chen J, Robertson FR, Adler RF (2008) Evaluation of global precipitation in reanalyses. J Appl Meteorol Climatol 47(9):2279–2299Google Scholar
  4. Bosilovich MG, Robertson FR, Chen J (2011) Global energy and water budgets in MERRA. J Clim 24(22):5721–5739Google Scholar
  5. Cherchi A, Alessandri A, Masina S, Navarra A (2011) Effects of increased CO2 levels on monsoons. Clim Dyn 37(1–2):83–101Google Scholar
  6. Chou C, Neelin JD (2004) Mechanisms of global warming impacts on regional tropical precipitation. J Clim 17(13):2688–2701Google Scholar
  7. Chou C, Neelin JD, Chen CA, Tu JY (2009) Evaluating the "Rich-Get-Richer" mechanism in tropical precipitation change under global warming. J Clim 22(8):1982–2005Google Scholar
  8. Compo GP et al (2015) The International Surface Pressure Databank version 3. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory.  https://doi.org/10.5065/D6D50K29
  9. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28Google Scholar
  10. Dai A, Zhao T (2017) Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes. ClimChange 144(3):519–533Google Scholar
  11. Dong B, Sutton R (2015) Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall. Nat Clim Change 5(8):U173–U757Google Scholar
  12. England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai WJ, Sen Gupta A, McPhaden MJ, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4(3):222–227Google Scholar
  13. Epule ET, Peng C, Lepage L, Chen Z (2014) The causes, effects and challenges of Sahelian droughts: a critical review. Reg Environ Change 14(1):145–156Google Scholar
  14. Fettweis X, Box JE, Agosta C, Amory C, Kittel C, Lang C, van As D, Machguth H, Gallee H (2017) Reconstructions of the 1900-2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 11(2):1015–1033Google Scholar
  15. Giannini A, Biasutti M, Verstraete MM (2008) A climate model-based review of drought in the Sahel: desertification, the re-greening and climate change. Glob Planet Change 64(3–4):119–128Google Scholar
  16. Goddard L, Kumar A, Solomon A, Smith D, Boer G, Gonzalez P, Kharin V, Merryfield W, Deser C, Mason SJ, Kirtman BP, Msadek R, Sutton R, Hawkins E, Fricker T, Hegerl G, Ferro CAT, Stephenson DB, Meehl GA, Stockdale T, Burgman R, Greene AM, Kushnir Y, Newman M, Carton J, Fukumori I, Delworth T (2013) A verification framework for interannual-to-decadal predictions experiments. Clim Dyn 40(1–2):245–272Google Scholar
  17. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34(3):623–642Google Scholar
  18. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77(3):437–471Google Scholar
  19. Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn Ser II 93(1):5–48Google Scholar
  20. Li JP, Zheng QC (2003) A new monsoon index and the geographical distribution of the global monsoons. Adv Atmos Sci 20(2):299–302Google Scholar
  21. Li L, Li W, Barros AP (2013) Atmospheric moisture budget and its regulation of the summer precipitation variability over the Southeastern United States. Clim Dyn 41(3–4):613–631Google Scholar
  22. Li P, Zhou T, Chen X (2018) Water vapor transport for spring persistent rains over southeastern China based on five reanalysis datasets. Clim Dyn 51(11–12):4243–4257Google Scholar
  23. Lin R, Zhou T, Qian Y (2014) Evaluation of global monsoon precipitation changes based on five reanalysis datasets. J Clim 27(3):1271–1289Google Scholar
  24. Mondal A, Kundu S, Mukhopadhyay A (2012) Rainfall trend analysis by Mann-Kendall test: a case study of north-eastern part of Cuttack district, Orissa. Int J Geol Earth and Environ Scie 2(1):70–78Google Scholar
  25. Poli P, Hersbach H, Dee DP, Berrisford P, Simmons AJ, Vitart F, Laloyaux P, Tan DGH, Peubey C, Thepaut J-N, Tremolet Y, Holm EV, Bonavita M, Isaksen L, Fisher M (2016) ERA-20C: an atmospheric reanalysis of the twentieth century. J Clim 29(11):4083–4097Google Scholar
  26. Polson D, Bollasina M, Hegerl GC, Wilcox LJ (2014) Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols. Geophys Res Lett 41(16):6023–6029Google Scholar
  27. Roads J, Kanamitsu M, Stewart R (2002) CSE water and energy budgets in the NCEP-DOE Reanalysis II. J Hydrometeorol 3(3):227–248Google Scholar
  28. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2014) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115(1–2):15–40Google Scholar
  29. Seager R, Naik N, Vecchi GA (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23(17):4651–4668Google Scholar
  30. Simmons AJ, Jones PD, Bechtold VD, Beljaars ACM, Kallberg PW, Saarinen S, Uppala SM, Viterbo P, Wedi N (2004) Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J Geophyal Res Atmos 109:D24115Google Scholar
  31. Stickler A, Bronnimann S, Valente MA, Bethke J, Sterin A, Jourdain S, Roucaute E, Vasquez MV, Reyes DA, Allan R, Dee D (2014) ERA-CLIM historical surface and upper-air data for future reanalyses. Bull Am Meteor Soc 95(9):1419–1430Google Scholar
  32. Trenberth KE, Guillemot CJ (1998) Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Clim Dyn 14(3):213–231Google Scholar
  33. Trenberth KE, Fasullo JT, Mackaro J (2011) Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J Clim 24(18):4907–4924Google Scholar
  34. Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Change 2(8):587–595Google Scholar
  35. Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VD, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen P, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012Google Scholar
  36. Wang B, Ding Q (2006) Changes in global monsoon precipitation over the past 56 years. Geophys Res Lett 33(6):L06711Google Scholar
  37. Wang B, Ding Q (2008) Global monsoon: dominant mode of annual variation in the tropics. Dyn Atmos Oceans 44(3–4):165–183Google Scholar
  38. Wang B, Clemens SC, Liu P (2003) Contrasting the Indian and East Asian monsoons: implications on geologic timescales. Mar Geol 201(1–3):5–21Google Scholar
  39. Wang B, Liu J, Kim HJ, Webster PJ, Yim SY, Xiang B (2013) Northern Hemisphere summer monsoon intensified by mega-El Nino/southern oscillation and Atlantic multidecadal oscillation. Proc Natl Acad Sci USA 110(14):5347–5352Google Scholar
  40. Wang PX, Wang B, Cheng H, Fasullo J, Guo Z, Kiefer T, Liu Z (2017) The global monsoon across time scales: mechanisms and outstanding issues. Earth Sci Rev 174:84–121Google Scholar
  41. Wang B, Li J, Cane MA, Liu J, Webster PJ, Xiang B, Kim H-M, Cao J, Ha K-J (2018) Toward predicting changes in the land monsoon rainfall a decade in advance. J Clim 31(7):2699–2714Google Scholar
  42. Weldeab S, Lea DW, Schneider RR, Andersen N (2007) 155,000 years of West African monsoon and ocean thermal evolution. Science 316(5829):1303–1307Google Scholar
  43. Willmott CJ, Matsuura K (2000) Terrestrial air temperature and precipitation: Monthly and annual climatologies. Centre for Climate Research, Department of Geography, University of Delaware. http://climate.geog.udel.edu/~climate/html_pages/Global2_Clim/README.global2_clim.html. Accessed 10 Feb 2016
  44. Yang H, Lohmann G, Wei W, Dima M, Ionita M, Liu JP (2016) Intensification and poleward shift of subtropical western boundary currents in a warming climate. J Geophys Res Oceans 121(7):4928–4945Google Scholar
  45. Yim S-Y, Wang B, Liu J, Wu Z (2013) A comparison of regional monsoon variability using monsoon indices. Clim Dyn 43(5–6):1423–1437Google Scholar
  46. Zhang L, Zhou T (2011) An assessment of monsoon precipitation changes during 1901–2001. Clim Dyn 37(1–2):279–296Google Scholar
  47. Zhou T, Yu R, Li H, Wang B (2008a) Ocean forcing to changes in global monsoon precipitation over the recent half-century. J Clim 21(15):3833–3852Google Scholar
  48. Zhou T, Zhang L, Li H (2008b) Changes in global land monsoon area and total rainfall accumulation over the last half century. Geophys Res Lett 35(16):L16707Google Scholar
  49. Zhou T, Turner AG, Kinter JL, Wang B, Qian Y, Chen X, Wu B, Wang B, Liu B, Zou L, He B (2016) GMMIP (v1.0) contribution to CMIP6: global monsoons model inter-comparison project. Geosci Model Dev 9(10):3589–3604Google Scholar
  50. Zhu C, Wang B, Qian W, Zhang B (2012) Recent weakening of northern East Asian summer monsoon: a possible response to global warming. Geophys Res Lett 39:L09809Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LASG, Institute of Atmospheric PhysicsChinese Academy of ScienceBeijingChina
  2. 2.CAS Center for Excellence in Tibetan Plateau Earth SciencesChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations