Advertisement

Dynamical downscaling over the complex terrain of southwest South America: present climate conditions and added value analysis

  • Deniz BozkurtEmail author
  • Maisa Rojas
  • Juan Pablo Boisier
  • Roberto Rondanelli
  • René Garreaud
  • Laura Gallardo
Article
  • 217 Downloads

Abstract

This study evaluates hindcast simulations performed with a regional climate model (RCM, RegCM4) driven by reanalysis data (ERA-Interim) over the Pacific coast and Andes Cordillera of extratropical South America. A nested domain configuration at \(0.44^{\circ }\) (\(\sim\) 50 km) and \(0.09^{\circ }\) (\(\sim\) 10 km) spatial resolutions is used for the simulations. RegCM4 is also driven by a global climate model (GCM, MPI-ESM-MR) on the same domain configuration to asses the added values for temperature and precipitation (historical simulations). Overall, both 10 km hindcast and historical simulation results are promising and exhibit a better representation of near-surface air temperature and precipitation variability compared to the 50 km simulations. High-resolution simulations suppress an overestimation of precipitation over the Andes Cordillera of northern Chile found with the 50 km simulations. The simulated daily temperature and precipitation extreme indices from 10 km hindcast simulation show a closer estimation of the observed fields. A persistent warm bias (\(\sim +\,{4\,}^{\circ }\hbox {C}\)) over the Atacama Desert in 10 km hindcast simulation reveals the complexity in representing land surface and radiative processes over the desert. Difficulties in capturing the temperature trend in northern Chile are notable for both hindcast simulations. Both resolutions exhibit added values for temperature and precipitation over large parts of Chile, in particular, the 10 km resolves the coastal-valley Andes transitions over central Chile. Our results highlight that resolutions coarser than 50 km (e.g., GCMs and reanalysis) miss important climate gradients imposed by complex topography. Given that the highest spatial resolution of the current regional simulations over the South America is about 50 km, higher resolutions are important to improve our understanding of the dynamical processes that determine climate over complex terrain and extreme environments.

Keywords

Model evaluation Temporal-spatial scale analysis Climate variability Chile Patagonia Atacama Desert 

Notes

Acknowledgements

This work was funded by FONDAP-CONICYT 15110009. The authors acknowledge the anonymous reviewer for the constructive comments on the manuscript. The simulations were performed within a project entitled “Simulaciones climáticas regionales y marco de evaluación de la vulnerabilidad” funded by Chilean Ministry of Environment. A platform has been developed within that project and all the simulation outputs described in this study can be accessible from that platform following the CORDEX data format protocols, available at http://simulaciones.cr2.cl/. The authors appreciate the support from Francisca Muñoz and Nancy Valdebenito at the Data and Computing unit at (CR)2. Powered@NLHPC: This research was supported by the supercomputing infrastructure of the NLHPC (ECM-02)

Supplementary material

382_2019_4959_MOESM1_ESM.pdf (8.6 mb)
Supplementary material 1 (pdf 8808 KB)

References

  1. Alvarez-Garreton C, Menzoda PA, Boisier JPea (2018) The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies-Chile dataset. Hydrol Earth Syst Sci 22:5817–5846CrossRefGoogle Scholar
  2. Bieniek PA, Bhatt US, Walsh JE, Rupp TS, Zhang J, Krieger JR, Vader R (2016) Dynamical downscaling of ERA-Interim temperature and precipitation for Alaska. J Appl Meteor Climatol 55:635–654.  https://doi.org/10.1175/JAMC-D-15-0153.1 CrossRefGoogle Scholar
  3. Boisier JP, Rondanelli R, Garreaud R, Muñoz F (2016) Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in Central Chile. Geophys Res Lett 43(1):413–421.  https://doi.org/10.1002/2015GL067265 CrossRefGoogle Scholar
  4. Boisier JP, Alvarez-Garreton C, Cordero R, Damiani A, Gallardo L, Garreaud R, Lambert F, Ramallo C, Rojas M, Rondanelli R (2018) Anthropogenic drying in Central-Southern Chile evidenced by long-term observations and climate model simulations. Elem Sci Anth.  https://doi.org/10.1525/elementa.328 Google Scholar
  5. Bozkurt D, Turuncoglu U, Sen OL, Dalfes HN (2012) Downscaled simulations of the ECHAM5, CCSM3 and HadCM3 global models for the Eastern Mediterranean-Black Sea region: evaluation of the reference period. Clim Dyn 39(1–2):207–225.  https://doi.org/10.1007/s00382-011-1187-x CrossRefGoogle Scholar
  6. Bozkurt D, Rondanelli R, Garreaud R, Arriagada A (2016) Impact of warmer eastern tropical Pacific SST on the March 2015 Atacama floods. Mon Weather Rev 144(11):4441–4460CrossRefGoogle Scholar
  7. Bozkurt D, Rojas M, Boisier JP, Valdivieso J (2018a) Projected hydroclimate changes over Andean basins in central Chile from downscaled CMIP5 models under the low and high emission scenarios. Clim Change 150(3–4):131–147.  https://doi.org/10.1007/s10584-018-2246-7 CrossRefGoogle Scholar
  8. Bozkurt D, Rondanelli R, Marín J, Garreaud R (2018b) Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica. J Geophys Res Atmos 128(3):3871–3892.  https://doi.org/10.1002/2017JD027796 CrossRefGoogle Scholar
  9. Carril A, Menéndez C, Remedio A et al (2012) Assessment of a multi-RCM ensemble for South Eastern South America. Clim Dyn 39:2747–2768CrossRefGoogle Scholar
  10. Comin AN, Schumacher V, Justino F, Fernrández A (2018) Impact of different microphysical parameterizations on extreme snowfall events in the Southern Andes. Weather Clim Extrem.  https://doi.org/10.1016/j.wace.2018.07.001 Google Scholar
  11. Coppola E, Giorgi F, Raffaele F, Fuentes-Franco R, Giuliani G, LLopart-Pereira M, Mamgain A, Mariotti L, Diro GT, Torma C (2014) Present and future climatologies in the phase i CREMA experiment. Clim Change 125(1):23–38.  https://doi.org/10.1016/j.atmosenv.2011.02.001 CrossRefGoogle Scholar
  12. Dee DP, Uppala SM, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Káallberg P, Káhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  13. Demaria EMC, Maurer EP, Thrasner B, Vicuñna S, Meza F (2013) Climate change impacts on an Alpine Watershed in Chile: do new model projections change the story? J Hydrol 502:128–138.  https://doi.org/10.1016/j.jhydrol.2013.08.027 CrossRefGoogle Scholar
  14. DGA (2017) Actualización del balance hídrico nacional. Tech. Rep. SIT No. 417, Ministerio de Obras Públicas, Dirección General de Aguas, División de Estudios y Planificación, Santiago, Chile. Realizado por Universidad de Chile and Pontificia Universidad Católica de ChileGoogle Scholar
  15. Di Luca A, Elia R, Laprise R (2013) Potential for small scale added value of RCMs downscaled climate change signal. Clim Dyn 40(3–4):601–618.  https://doi.org/10.1007/s00382-012-1415-z CrossRefGoogle Scholar
  16. Di Luca A, Argueso D, Evans JP, Laprise R (2016) Quantifying the overall added value of dynamical downscaling and the contribution from different spatial scales. J Geophys Res Atmos 121(4):1575–1590.  https://doi.org/10.1002/2015JD024009 CrossRefGoogle Scholar
  17. Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-atmosphere transfer scheme (BATS) Version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, NCAR, BoulderGoogle Scholar
  18. Falco M, Carril AF, Menéndez CG, Zaninelli PG, Li LZX (2018) Assessment of CORDEX simulations over South America: added value on seasonal climatology and resolution considerations. Clim Dyn.  https://doi.org/10.1007/s0038 Google Scholar
  19. Falvey M, Garreaud R (2009) Regional cooling in a warming world: recent temperature trends in the Southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res Atmos 114(D04):102Google Scholar
  20. Fritsch JM, Chappell CF (1980) Numerical prediction of convectively driven mesoscale pressure systems. I. Convective parameterization. J Geophys Res 37:1722–1733Google Scholar
  21. Gallardo L, Olivares G, Langner J, Aarhus B (2002) Coastal lows and sulfur air pollution in Central Chile. Atmos Environ 36(23):3829–3841CrossRefGoogle Scholar
  22. Garreaud R (2009) The Andes climate and weather. Adv Geosci 7:1–9Google Scholar
  23. Garreaud R, Lopez P, Minvielle M, Rojas M (2010) Large-scale control on the Patagonian climate. Earth Planet Sci Lett 292:39–50.  https://doi.org/10.1016/j.epsl.2010.01.017 CrossRefGoogle Scholar
  24. Garreaud R, Molina A, Farias M (2013) Andean uplift, ocean cooling and Atacama hyperaridity: a climate modeling perspective. J Clim 26(1):215–230.  https://doi.org/10.1175/JCLI-D-12-00001.1 CrossRefGoogle Scholar
  25. Garreaud R, Falvey M, Montecinos A (2016) Orographic precipitation in coastal southern Chile: mean distribution, temporal variability, and linear contribution. J Hydrometeor 17:1185–1202CrossRefGoogle Scholar
  26. Garreaud R, Alvarez-Garreton C, Barichivich J, Boisier JP, Duncan C, Galleguillos M, Zambrano-Bigiarini M (2017) The 2010–2015 mega drought in Central Chile: impacts on regional hydroclimate and vegetation. Hydrol Earth Syst Sci 21:6307–6327CrossRefGoogle Scholar
  27. Giorgetta MA et al (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5(3):572–597CrossRefGoogle Scholar
  28. Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second generation regional climate model (RegCM2). Part I: Boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813.  https://doi.org/10.1175/1520-0493(1993)121<2794:DOASGR>2.0.CO;2 CrossRefGoogle Scholar
  29. Giorgi F, Marinucci MR, Bates GT, DeCanio G (1993b) Development of a second generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832.  https://doi.org/10.1175/1520-0493(1993)121<2814:DOASGR>2.0.CO;2 CrossRefGoogle Scholar
  30. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183Google Scholar
  31. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Guttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29.  https://doi.org/10.3354/cr01018 CrossRefGoogle Scholar
  32. Giorgi F, Torma C, Coppola E, Ban N, Schar C, Somot S (2016) Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. Nat Geosci 9:584–589.  https://doi.org/10.1038/ngeo2761 CrossRefGoogle Scholar
  33. Grassi B, Redaelli G, Visconti G (2013) Arctic sea ice reduction and extreme climate events over the Mediterranean region. J Clim 26:10,101–10,110CrossRefGoogle Scholar
  34. Grell GA (1993) Prognostic evaluation of assumptions used by Cumulus parameterizations. Mon Weather Rev 121:764–787CrossRefGoogle Scholar
  35. Grell GA, Dudhia J, Stauffer DR (1994) Description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, NCAR, BoulderGoogle Scholar
  36. Guttler I, Stepanov I, Branković C, Nikulin G, Jones C (2015) Impact of horizontal resolution on precipitation in complex orography simulated by the Regional Climate Model RCA3. Mon Weather Rev 143:3610–3627.  https://doi.org/10.1175/MWR-D-14-00302.1 CrossRefGoogle Scholar
  37. Holtslag AAM, de Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575.  https://doi.org/10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2 CrossRefGoogle Scholar
  38. Jones C, Giorgi F, Asrar GR (2011) The coordinated regional downscaling experiment: CORDEX, an international downscaling link to CMIP5. CLIVAR Exch 16:34–40Google Scholar
  39. Jones PW (1999) First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon Weather Rev 127:2204–2210CrossRefGoogle Scholar
  40. Karl TR, Nicholls N, Ghazi A (1999) CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes: workshop summary. Clim Change 42:3–7CrossRefGoogle Scholar
  41. Kato S, Loeb NG, Rose FG, Doelling DR, Rutan DA, Caldwell TE, Yu L, Weller RA (2013) Surface irradiances consistent with ceres-derived top-of-atmosphere shortwave and longwave irradiances. J Clim 26:2719–2740.  https://doi.org/10.1175/JCLI-D-12-00436.1 CrossRefGoogle Scholar
  42. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Breigleb BP, Williamson D, Rasch P (1996) Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note NCAR/TN-420+STR, NCAR, BoulderGoogle Scholar
  43. Lenaerts JTM, van den Broeke MR, van Wessem JM, van de Berg WJ, van Meijgaard E, van Ulft LH, Schaefer M (2014) Extreme precipitation and climate gradients in patagonia revealed by high-resolution regional atmospheric climate modeling. J Clim 27:4607–4621.  https://doi.org/10.1175/JCLI-D-13-00579.1 CrossRefGoogle Scholar
  44. Marcella MP, Eltahir EA (2012) Modeling the summertime climate of Southwest Asia: the role of land surface processes in shaping the climate of semiarid regions. J Clim 25(2):704–719.  https://doi.org/10.1175/2011JCLI4080.1 CrossRefGoogle Scholar
  45. Martens B, Miralles DG, Lievens H, van der Schalie R, de Jeu RAM, Fernandez-Prieto D, Beck HE, Dorigo WA, Verhoest NEC (2017) Gleam v3: satellite-based land evaporation and root-zone soil moisture. Geosci Model Dev 10:1903–1925.  https://doi.org/10.5194/gmd-2016-162 CrossRefGoogle Scholar
  46. Mazzeo A, Huneeus N, Ordoñez C, Orfanoz-Cheuquelaf A, Menut L, Mailler S, Valari M, van der Gon HD, Gallardo L, Muñoz R, Donoso R, Galleguillos M, Osses M, Tolvett S (2018) Impact of residential combustion and transport emissions on air pollution in santiago during winter. Atmos Environ 190:195–208.  https://doi.org/10.1016/j.atmosenv.2018.06.043 CrossRefGoogle Scholar
  47. Middleton N (2003) Going to extremes. Pan Books, LondonGoogle Scholar
  48. Montesarchio M, Zollo AL, Bucchignani E, Mercogliano P, Castellari S (2014) Performance evaluation of high-resolution regional climate simulations in the Alpine space and analysis of extreme events. J Geophys Res Atmos 119:3222–3237.  https://doi.org/10.1002/2013JD021105 CrossRefGoogle Scholar
  49. Onol B (2012) Effects of coastal topography on climate: high-resolution simulation with a regional climate model. Clim Res 52:159–174.  https://doi.org/10.3354/cr01077 CrossRefGoogle Scholar
  50. Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional-scale water and energy budgets: representation of surged cloud and precipitation processes within RegCM. J Geophys Res 105:29,579–29,594CrossRefGoogle Scholar
  51. Peterson TC, et al (2001) Report on the activities of the working group on climate change detection and related rapporteurs 1998-2001. WMO Tech. Report Rep. WCDMP-47, WMO-TD 1071, WMO, Geneve, SwitzerlandGoogle Scholar
  52. Rojas M (2006) Multiply nested regional climate simulation for southern South America: sensitivity to model resolution. Mon Weather Rev 134:2208–2223.  https://doi.org/10.1175/MWR3167.1 CrossRefGoogle Scholar
  53. Rutllant J, Fuenzalida H (1991) Synoptic aspects of the central Chile rainfall variability associated with the Southern Oscillation. Int J Climatol 11:63–76CrossRefGoogle Scholar
  54. Rutllant J, Fuenzalida H, Aceituno P (2003) Climate dynamics along the arid northern coast of Chile: The 1997–1998 Diclima Experiment. J Geophys Res 108:4538–4542CrossRefGoogle Scholar
  55. Saide PE, Carmichael GR, Spak SN, Gallardo L, Osses AE, Mena-Carrasco MA, Pagowski M (2011) Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF-Chem CO tracer model. Atmos Environ 45:2769–2780.  https://doi.org/10.1016/j.atmosenv.2011.02.001 CrossRefGoogle Scholar
  56. Schmitz R (2005) Modelling of air pollution dispersion in Santiago de Chile. Atmos Environ 39(11):2035–2047CrossRefGoogle Scholar
  57. Shi Y, Wang G, Gao X (2018) Role of resolution in regional climate change projections over China. Clim Dyn 51(5–6):2375–2396.  https://doi.org/10.1007/s0038 CrossRefGoogle Scholar
  58. Silvestri G, Vera C (2009) Nonstationary impacts of the southern annular mode on Southern Hemisphere climate. J Clim 22(22):6142–6148CrossRefGoogle Scholar
  59. Solman SA (2013) Regional climate modeling over South America: a review. Adv Meteor 2013:1–13.  https://doi.org/10.1155/2013/504357 CrossRefGoogle Scholar
  60. Solman SA, Sanchez E, Samuelsson P, da Rocha RP, Li L, Marengo J, Pessacg NL, Remedio ARC, Chou SC, Berbery H, Le Treut H, de Castro M, Jacob D (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41(5–6):1139–1157CrossRefGoogle Scholar
  61. Torma C, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain: precipitation over the Alps. J Geophys Res Atmos 120(9):3957–3972.  https://doi.org/10.1002/2014JD022781 CrossRefGoogle Scholar
  62. Viale M, Garreaud R (2015) Orographic effects of the subtropical and extratropical Andes on upwind precipitating clouds. J Geophys Res Atmos 120:4962–4974.  https://doi.org/10.1002/2014JD023014 CrossRefGoogle Scholar
  63. Viale M, Houze RA, Rasmussen KL (2013) Upstream orographic enhancement of a narrow cold-frontal rainband approaching the Andes. Mon Weather Rev 141:1708–1730.  https://doi.org/10.1175/MWR-D-12-00138.1 CrossRefGoogle Scholar
  64. Vuille M, Franquist E, Garreaud R, Casimiro WSL, Cáceres B (2015) Impact of the global warming hiatus on Andean temperature. J Geophys Res Atmos 120(9):3745–3757CrossRefGoogle Scholar
  65. Walker MD, Diffenbaugh NS (2009) Evaluation of high-resolution simulations of daily-scale temperature and precipitation over the United States. Clim Dyn 33:1131–1147CrossRefGoogle Scholar
  66. Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11:2628–2644.  https://doi.org/10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Climate and Resilience ResearchUniversity of ChileSantiagoChile
  2. 2.Department of GeophysicsUniversity of ChileSantiagoChile

Personalised recommendations