Revisiting MJO, Kelvin waves, and El Niño relationships using a simple ocean model

  • Nicholas D. LybargerEmail author
  • Cristiana Stan


Mechanisms governing interactions between the Madden–Julian Oscillation (MJO), Kelvin wave activity, and El Niño development are reexamined using the oceanic component of the Zebiak–Cane (ZCocn) model of the Pacific basin. Prescribed wind stress from a free run of the super-parameterized Community Climate System Model version 4 (SP-CCSM4) is used to force ZCocn and the simulated El Niño events are analyzed with respect to their relationship with the MJO wind forcing. Composites of El Niño events strongly influenced by the MJO show the earlier onset of a flattened, El Niño-like state of the thermocline. In contrast, the composites of El Niño events not influenced by the MJO winds show a later onset, and are dominated by a transient-like thermocline along with periods of upwelling Kelvin wave activity. Sensitivity experiments performed to identify whether modifying MJO wind stress and oceanic Kelvin wave activity influences these features show that although MJO contributes to the development of these features, it is not necessarily the primary driver. The relative phasing between MJO and oceanic Kelvin wave activity seems to be the most important factor governing the influence of MJO on El Niño. When in phase and collocated with Kelvin wave activity, MJO westerly wind stress contributes to the amplification of preexisting downwelling Kelvin waves, leading to earlier onset and greater strength of the resulting El Niño events. The out-of-phase interactions between MJO and oceanic Kelvin waves explain the observed lack of influence of MJO onto some El Niño events.



This work was supported by US NSF Grants AGS-1338427 and AGS-1211848, US NOAA Grants NA14OAR4310160, NA12NWS4680022, and US NASA Grant NNX14AM19G. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant number OCI-1053575. We would like to thank Dr. Jieshun Zhu of ESSIC and three anonymous reviewers for helping us improve our manuscript significantly.


  1. Batstone C, Hendon HH (2005) Characteristics of stochastic variability associated with ENSO and the role of the MJO. J Clim 18:1773–1789. CrossRefGoogle Scholar
  2. Battisti D (1988) Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere ocean model. J Atmos Sci 45:2889–2919.;2 CrossRefGoogle Scholar
  3. Chang P, Wang B, Li T, Ji L (1994) Interactions between the seasonal cycle and the southern oscillation—frequency entrainment and chaos in a coupled ocean-atmosphere model. Geophys Res Lett 21:2817–2820. CrossRefGoogle Scholar
  4. Chen D, Lian T, Fu C et al (2015) Strong influence of westerly wind bursts on El Nino diversity. Nat Geosci 8:339–345. CrossRefGoogle Scholar
  5. Cravatte S, Picaut J, Eldin G (2003) Second and first baroclinic Kelvin modes in the equatorial Pacific at intraseasonal timescales. J Geophys Res-Oceans 108:3266. CrossRefGoogle Scholar
  6. Cravatte S, Boulanger JP, Picaut J (2004) Reflection of intraseasonal equatorial Rossby waves at the western boundary of the Pacific Ocean. Geophys Res Lett 31:L10301. CrossRefGoogle Scholar
  7. Enfield DB (1987) The intraseasonal oscillation in eastern Pacific sea levels: how is it forced? J Phys Oceanogr 17:1860–1876.;2 CrossRefGoogle Scholar
  8. Fedorov AV, Philander SG (2001) A stability analysis of tropical ocean-atmosphere interactions: bridging measurements and theory for El Nino. J Clim 14:3086–3101.;2 CrossRefGoogle Scholar
  9. Flugel M, Chang P (1996) Impact of dynamical and stochastic processes on the predictability of ENSO. Geophys Res Lett 23:2089–2092. CrossRefGoogle Scholar
  10. Flugel M, Chang P, Penland C (2004) The role of stochastic forcing in modulating ENSO predictability. J Clim 17:3125–3140.;2 CrossRefGoogle Scholar
  11. Gebbie G, Eisenman I, Wittenberg A, Tziperman E (2007) Modulation of westerly wind bursts by sea surface temperature: a semistochastic feedback for ENSO. J Atmos Sci 64:3281–3295. CrossRefGoogle Scholar
  12. Goddard L, Philander SG (2000) The energetics of El Nino and La Nina. J Clim 13:1496–1516.;2 CrossRefGoogle Scholar
  13. Hayes S, Mangum L, Picaut J et al (1991) Toga-Tao—a moored array for real-time measurements in the tropical Pacific-Ocean. Bull Am Meteorol Soc 72:339–347.;2 CrossRefGoogle Scholar
  14. Hendon HH, Liebmann B, Glick JD (1998) Oceanic Kelvin waves and the Madden-Julian oscillation. J Atmos Sci 55:88–101.;2 CrossRefGoogle Scholar
  15. Hendon HH, Wheeler MC, Zhang C (2007) Seasonal dependence of the MJO–ENSO relationship. J Clim 20:531–543CrossRefGoogle Scholar
  16. Hu Z-Z, Kumar A, Jha B et al (2012) An analysis of warm pool and cold tongue El Nios: air-sea coupling processes, global influences, and recent trends. Clim Dyn 38:2017–2035. CrossRefGoogle Scholar
  17. Hu S, Fedorov AV, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts on the diversity and predictability of El Niño events: an ocean energetics perspective: Hu et al.: WWB and ENSO diversity: energetics view. Geophys Res Lett 41:4654–4663. CrossRefGoogle Scholar
  18. Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. 1. Conceptual model. J Atmos Sci 54:811–829.;2 CrossRefGoogle Scholar
  19. Jin F, Neelin J, Ghil M (1994) El-Nino on the devils staircase—annual subharmonic steps to chaos. Science 264:70–72. CrossRefGoogle Scholar
  20. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–472.;2 CrossRefGoogle Scholar
  21. Kapur A, Zhang C (2012) Multiplicative MJO forcing of ENSO. J Clim 25:8132–8147. CrossRefGoogle Scholar
  22. Kapur A, Zhang C, Zavala-Garay J, Hendon HH (2012) Role of stochastic forcing in ENSO in observations and a coupled GCM. Clim Dyn 38:87–107. CrossRefGoogle Scholar
  23. Kessler WS, Kleeman R (2000) Rectification of the Madden-Julian oscillation into the ENSO cycle. J Clim 13:3560–3575.;2 CrossRefGoogle Scholar
  24. Kessler W, Mcphaden M, Weickmann K (1995) Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J Geophys Res-Oceans 100:10613–10631. CrossRefGoogle Scholar
  25. Kirtman BP (1997) Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J Clim 10:1690–1704.;2 CrossRefGoogle Scholar
  26. Kleeman R, Moore AM (1997) A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J Atmos Sci 54:753–767.;2 CrossRefGoogle Scholar
  27. Kousky VE, Higgins RW (2007) An alert classification system for monitoring and assessing the ENSO cycle. Weather Forecast 22:353–371. CrossRefGoogle Scholar
  28. Lian T, Chen D, Tang Y, Wu Q (2014) Effects of westerly wind bursts on El Nino: a new perspective. Geophys Res Lett 41:3522–3527. CrossRefGoogle Scholar
  29. Lopez H, Kirtman BP, Tziperman E, Gebbie G (2013) Impact of interactive westerly wind bursts on CCSM3. Dyn Atmos Oceans 59:24–51. CrossRefGoogle Scholar
  30. Lybarger ND, Stan C (2018) The effect of the MJO on the energetics of El Niño. Clim Dyn 51:2825–2839. CrossRefGoogle Scholar
  31. Madden R, Julian P (1972) Description of global-scale circulation cells in tropics with a 40–50 day period. J Atmos Sci 29:1109-+.;2 CrossRefGoogle Scholar
  32. Marshall AG, Alves O, Hendon HH (2009) A coupled GCM analysis of MJO activity at the onset of El Nino. J Atmos Sci 66:966–983. CrossRefGoogle Scholar
  33. McPhaden MJ, Taft BA (1988) Dynamics of seasonal and intraseasonal variability in the eastern equatorial Pacific. J Phys Oceanogr 18:1713–1732.;2 CrossRefGoogle Scholar
  34. McPhaden MJ, Yu X (1999) Equatorial waves and the 1997–98 El Niño. Geophys Res Lett 26:2961–2964. CrossRefGoogle Scholar
  35. Moore AM, Kleeman R (1996) The dynamics of error growth and predictability in a coupled model of ENSO. Q J R Meteorol Soc 122:1405–1446. CrossRefGoogle Scholar
  36. Moore AM, Kleeman R (1999a) Stochastic forcing of ENSO by the intraseasonal oscillation. J Clim 12:1199–1220CrossRefGoogle Scholar
  37. Moore AM, Kleeman R (1999b) The nonnormal nature of El Nino and intraseasonal variability. J Clim 12:2965–2982.;2 CrossRefGoogle Scholar
  38. Munnich M, Cane M, Zebiak S (1991) A study of self-excited oscillations of the tropical ocean atmosphere system. 2. Nonlinear cases. J Atmos Sci 48:1238–1248.;2 CrossRefGoogle Scholar
  39. Neelin J (1991) The slow sea-surface temperature mode and the fast-wave limit—analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J Atmos Sci 48:584–606.;2 CrossRefGoogle Scholar
  40. Neelin JD, Battisti DS, Hirst AC et al (1998) ENSO theory. J Geophys Res-Oceans 103:14261–14290. CrossRefGoogle Scholar
  41. Penland C, Matrosova L (1994) A balance condition for stochastic numerical-models with application to the El-Nino-Southern oscillation. J Clim 7:1352–1372.;2 CrossRefGoogle Scholar
  42. Penland C, Sardeshmukh P (1995) The optimal-growth of tropical sea-surface temperature anomalies. J Clim 8:1999–2024.;2 CrossRefGoogle Scholar
  43. Perez CL, Moore AM, Zavala-Garay J, Kleeman R (2005) A comparison of the influence of additive and multiplicative stochastic forcing on a coupled model of ENSO. J Clim 18:5066–5085. CrossRefGoogle Scholar
  44. Roundy PE, Kiladis GN (2006) Observed relationships between oceanic kelvin waves and atmospheric forcing. J Clim 19:5253–5272. CrossRefGoogle Scholar
  45. Seiki A, Takayabu YN (2007) Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: statistics. Mon Weather Rev 135:3325–3345. CrossRefGoogle Scholar
  46. Seiki A, Takayabu YN, Yoneyama K et al (2009) The oceanic response to the Madden-Julian oscillation and ENSO. Sola 5:93–96. CrossRefGoogle Scholar
  47. Spall MA, Pedlosky J (2005) Reflection and transmission of equatorial Rossby waves. J Phys Oceanogr 35:363–373. CrossRefGoogle Scholar
  48. Stan C, Xu L (2014) Climate simulations and projections with a super-parameterized climate model. Environ Model Softw 60:134–152. CrossRefGoogle Scholar
  49. Suarez M, Schopf P (1988) A delayed action oscillator for Enso. J Atmos Sci 45:3283–3287.;2 CrossRefGoogle Scholar
  50. Thompson CJ, Battisti DS (2000) A linear stochastic dynamical model of ENSO. Part I: model development. J Clim 13:2818–2832.;2 CrossRefGoogle Scholar
  51. Tziperman E, Cane M, Zebiak S (1995) Irregularity and locking to the seasonal cycle in an Enso prediction model as explained by the quasi-periodicity route to chaos. J Atmos Sci 52:293–306.;2 CrossRefGoogle Scholar
  52. Wang C (2001) A unified oscillator model for the El Niño-southern oscillation. J Clim 14:98–115.;2 CrossRefGoogle Scholar
  53. Wang B, Barcilon A, Fang Z (1999) Stochastic dynamics of El Nino-southern oscillation. J Atmos Sci 56:5–23.;2 CrossRefGoogle Scholar
  54. Wang W, Chen M, Kumar A, Xue Y (2011) How important is intraseasonal surface wind variability to real-time ENSO prediction?: ISV IMPACTS ON ENSO PREDICTION. Geophys Res Lett 38:1–4. Google Scholar
  55. Zebiak S (1989) On the 30–60 day oscillation and the prediction of Elnino. J Clim 2:1381–1387.;2 CrossRefGoogle Scholar
  56. Zebiak S, Cane M (1987) A model El-Nino southern oscillation. Mon Weather Rev 115:2262–2278.;2 CrossRefGoogle Scholar
  57. Zhang CD (2001) Intraseasonal perturbations in sea surface temperatures of the equatorial eastern Pacific and their association with the Madden–Julian oscillation. J Clim 14:1309–1322.;2 CrossRefGoogle Scholar
  58. Zhang CD, Gottschalck J (2002) SST anomalies of ENSO and the Madden–Julian oscillation in the equatorial Pacific. J Clim 15:2429–2445.;2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Atmospheric, Oceanic, and Earth ScienceGeorge Mason UniversityFairfaxUSA
  2. 2.Center for Ocean-Land-Atmosphere StudiesFairfaxUSA

Personalised recommendations