Advertisement

Co-existing climate attractors in a coupled aquaplanet

  • M. BrunettiEmail author
  • J. Kasparian
  • C. Vérard
Article

Abstract

The first step in exploring the properties of dynamical systems like the Earth climate is to identify the different phase space regions where the trajectories asymptotically evolve, called ‘attractors’. In a given system, multiple attractors can co-exist under the effect of the same forcing. At the boundaries of their basins of attraction, small changes produce large effects. Therefore, they are key regions for understanding the system response to perturbations. Here we prove the existence of up to five attractors in a simplified climate system where the planet is entirely covered by the ocean (aquaplanet). These attractors range from a snowball to a hot state without sea ice, and their exact number depends on the details of the coupled atmosphere–ocean–sea ice configuration. We characterise each attractor by describing the associated climate feedbacks, by using the principal component analysis, and by measuring quantities borrowed from the study of dynamical systems, namely instantaneous dimension and persistence.

Keywords

Coupled aquaplanet Attractors GCM Complexity 

Notes

Acknowledgements

We acknowledge the financial support from the Swiss National Science Foundation (Sinergia Project CRSII5_180253). The computations were performed at University of Geneva on the Baobab and Climdal3 clusters. We are grateful to David Nagy, Carmelo E. Mileto and Enzo Putti-Garcia for running some of the simulations. We acknowledge an anonymous reviewer and Valerio Lucarini for helpful comments and suggestions. M. B. thanks Martin Beniston for inspiring discussions.

References

  1. Abbot DS, Voigt A, Koll D (2011) The jormungand global climate state and implications for neoproterozoic glaciations. J Geophys Res 116(D18):103CrossRefGoogle Scholar
  2. Adcroft A, Campin JM, Hill C, Marshall J (2004) Implementation of an atmosphere ocean general circulation model on the expanded spherical cube. Mon Weather Rev 132:2845.  https://doi.org/10.1175/MWR2823.1 CrossRefGoogle Scholar
  3. Barstow JK, Tsang CCC, Wilson CF, Irwin PGJ, Taylor FW, McGouldrick K, Drossart P, Piccioni G, Tellmann S (2012) Models of the global cloud structure on Venus derived from Venus Express observations. Icarus 217:542–560.  https://doi.org/10.1016/j.icarus.2011.05.018 CrossRefGoogle Scholar
  4. Bathiany S, Dijkstra H, Crucifix M, Dakos V, Brovkin V, Williamson MS, Lenton TM, Scheffer M (2016) Beyond bifurcation: using complex models to understand and predict abrupt climate change. Dyn Stat Clim Syst 1(1):dzw004.  https://doi.org/10.1093/climsys/dzw004 Google Scholar
  5. Boccaletti G, Ferrari R, Adcroft A, Ferreira D, Marshall J (2005) The vertical structure of ocean heat transport. Geophys Res Lett 32:L10603.  https://doi.org/10.1029/2005GL022474 CrossRefGoogle Scholar
  6. Boschi R, Lucarini V, Pascale S (2013) Bistability of the climate around the habitable zone: a thermodynamic investigation. Icarus 226:1724–1742.  https://doi.org/10.1016/j.icarus.2013.03.017 1207.1254CrossRefGoogle Scholar
  7. Brunetti M, Vérard C (2018) How to reduce long-term drift in present-day and deep-time simulations? Clim Dyn 50:4425–4436.  https://doi.org/10.1007/s00382-017-3883-7 1708.08380CrossRefGoogle Scholar
  8. Brunetti M, Vérard C, Baumgartner PO (2015) Modeling the Middle Jurassic ocean circulation. J Palaeogeogr 4:373–386Google Scholar
  9. Budyko MI (1969) The effect of solar radiation variations on the climate of the Earth. Tellus Ser A 21:611–619.  https://doi.org/10.1111/j.2153-3490.1969.tb00466.x CrossRefGoogle Scholar
  10. Caballero R, Langen PL (2005) The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys Res Lett 32:L02705.  https://doi.org/10.1029/2004GL021581 CrossRefGoogle Scholar
  11. Dakos V, Scheffer M, van Nes EH, Brovkin V, Petoukhov V, Held H (2008) Slowing down as an early warning signal for abrupt climate change. Proc Natl Acad Sci 105(38):14308–14312.  https://doi.org/10.1073/pnas.0802430105, http://www.pnas.org/content/105/38/14308
  12. Donohoe A, Battisti DS (2012) What determines meridional heat transport in climate models? J Clim 25:3832–3850.  https://doi.org/10.1175/JCLI-D-11-00257.1 CrossRefGoogle Scholar
  13. Faranda D, Messori G, Alvarez-Castro MC, Yiou P (2017a) Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years. Nonlinear Process Geophys 24:713–725.  https://doi.org/10.5194/npg-24-713-2017 CrossRefGoogle Scholar
  14. Faranda D, Messori G, Yiou P (2017b) Dynamical proxies of North Atlantic predictability and extremes. Sci Rep 7:41278.  https://doi.org/10.1038/srep41278 CrossRefGoogle Scholar
  15. Faranda D, Alvarez-Castro MC, Messori G, Rodrigues D, Yiou P (2019) The hammam effect or how a warm ocean enhances large scale atmospheric predictability. Nat Commun 10:1316.  https://doi.org/10.1038/s41467-019-09305-8 CrossRefGoogle Scholar
  16. Ferreira D, Marshall J, Rose B (2011) Climate determinism revisited: multiple equilibria in a complex climate model. J Clim 24:992–1012.  https://doi.org/10.1175/2010JCLI3580.1 CrossRefGoogle Scholar
  17. Ferreira D, Marshall J, Ito T, McGee D (2018) Linking glacial-interglacial states to multiple equilibria of climate. Geophys Res Lett 45(17):9160–9170.  https://doi.org/10.1029/2018GL077019 CrossRefGoogle Scholar
  18. Ferro CAT, Segers J (2003) Inference for clusters of extreme values. J R Stat Soc B 65:545–556.  https://doi.org/10.1111/1467-9868.00401 CrossRefGoogle Scholar
  19. Freitas ACM, Freitas JM, Todd M (2010) Hitting time statistics and extreme value theory. Probab Theory Relat Fields 147:675–710.  https://doi.org/10.1007/s00440-009-0221-y CrossRefGoogle Scholar
  20. Gálfi VM, Bódai T, Lucarini V (2017) Convergence of extreme value statistics in a two-layer quasi-geostrophic atmospheric model. Complexity 2017:ID 5340,858.  https://doi.org/10.1155/2017/5340848
  21. Gallavotti G (2006) Stationary nonequilibrium statistical mechanics. Encycl Math Phys 3:530–539CrossRefGoogle Scholar
  22. Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–160CrossRefGoogle Scholar
  23. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang ZL, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991.  https://doi.org/10.1175/2011JCLI4083.1 CrossRefGoogle Scholar
  24. Ghil M (1976) Climate stability for a sellers-type model. J Atmos Sci 33:3–20CrossRefGoogle Scholar
  25. Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50:346–349.  https://doi.org/10.1103/PhysRevLett.50.346 CrossRefGoogle Scholar
  26. Greenberg R (2002) Tides and the biosphere of Europa: a liquid-water ocean beneath a thin crust of ice may offer several habitats for the evolution of life on one of jupiter’s moons. Am Sci 90(1):48–55. http://www.jstor.org/stable/27857596
  27. Held IM (2005) The gap between simulation and understanding in climate modeling. Bull Am Meteorol Soc 86:1609–1614.  https://doi.org/10.1175/BAMS-86-11-1609 CrossRefGoogle Scholar
  28. Jeevanjee N, Hassanzadeh P, Hill S, Sheshadri A (2017) A perspective on climate model hierarchies. J Adv Model Earth Syst 9:1760–1771.  https://doi.org/10.1002/2017MS001038 CrossRefGoogle Scholar
  29. Kirschvink J (1992) Late proterozoic low-latitude global glaciation: the snowball earth. In: The proterozoic biosphere: a multidisciplinary study. Cambridge University Press, New York, pp 51–52. https://authors.library.caltech.edu/36446/
  30. Kucharski F, Molteni F, Bracco A (2006) Decadal interactions between the western tropical Pacific and the North Atlantic Oscillation. Clim Dyn 26:79–91.  https://doi.org/10.1007/s00382-005-0085-5 CrossRefGoogle Scholar
  31. Kucharski F, Molteni F, King MP, Farneti R, Kang IS, Feudale L (2013) On the need of intermediate complexity general circulation models: a speedy example. Bull Am Meteorol Soc 94(1):25–30.  https://doi.org/10.1175/BAMS-D-11-00238.1 CrossRefGoogle Scholar
  32. Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Technical Note, NCAR, Boulder COGoogle Scholar
  33. Leadbetter MR (1983) Extremes and local dependence in stationary sequences. Z Wahrscheinlichkeitstheorie verw Gebiete 65:291–306.  https://doi.org/10.1007/BF00532484 CrossRefGoogle Scholar
  34. Lembo V, Lunkeit F, Lucarini V (2019) TheDiato (v1.0)—a new diagnostic tool for water, energy and entropy budgets in climate models. Geosci Model Dev Discuss.  https://doi.org/10.5194/gmd-2019-37
  35. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci 105(6):1786–1793.  https://doi.org/10.1073/pnas.0705414105. http://www.pnas.org/content/105/6/1786
  36. Lewis JP, Weaver AJ, Eby M (2007) Snowball versus slushball Earth: dynamic versus nondynamic sea ice? J Geophys Res (Oceans) 112:C11014.  https://doi.org/10.1029/2006JC004037 CrossRefGoogle Scholar
  37. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–148.  https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 CrossRefGoogle Scholar
  38. Lucarini V, Bódai T (2017) Edge states in the climate system: exploring global instabilities and critical transitions. Nonlinearity 30:R32.  https://doi.org/10.1088/1361-6544/aa6b11 1605.03855CrossRefGoogle Scholar
  39. Lucarini V, Bódai T (2019) Transitions across melancholia states in a climate model: reconciling the deterministic and stochastic points of view. Phys Rev Lett 122(15):158701.  https://doi.org/10.1103/PhysRevLett.122.158701 1808.05098CrossRefGoogle Scholar
  40. Lucarini V, Pascale S (2014) Entropy production and coarse graining of the climate fields in a general circulation model. Clim Dyn 43:981–1000.  https://doi.org/10.1007/s00382-014-2052-5 1304.3945CrossRefGoogle Scholar
  41. Lucarini V, Ragone F (2011) Energetics of climate models: net energy balance and meridional enthalpy transport. Rev Geophys 49:RG1001.  https://doi.org/10.1029/2009RG000323
  42. Lucarini V, Fraedrich K, Lunkeit F (2010) Thermodynamic analysis of snowball Earth hysteresis experiment: efficiency, entropy production and irreversibility. Q J R Meteorol Soc 136:2–11.  https://doi.org/10.1002/qj.543 0905.3669CrossRefGoogle Scholar
  43. Lucarini V, Faranda D, Wouters J (2012) Universal behaviour of extreme value statistics for selected observables of dynamical systems. J Stat Phys 147:63–73.  https://doi.org/10.1007/s10955-012-0468-z 1110.0176CrossRefGoogle Scholar
  44. Lucarini V, Blender R, Herbert C, Ragone F, Pascale S, Wouters J (2014) Mathematical and physical ideas for climate science. Rev Geophys 52(4):809–859.  https://doi.org/10.1002/2013RG000446 CrossRefGoogle Scholar
  45. Lucarini V, Faranda D, Freitas J, Holland M, Kuna T, Nicol M, Vaienti S (2016) Extremes and recurrence in dynamical systems. Pure and applied mathematics: a Wiley series of texts, monographs and tracts. Wiley. https://books.google.ch/books?id=jRAiDAAAQBAJ
  46. Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997a) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res 102:5753–5766.  https://doi.org/10.1029/96JC02775 CrossRefGoogle Scholar
  47. Marshall J, Hill C, Perelman L, Adcroft A (1997b) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J Geophys Res 102:5733–5752.  https://doi.org/10.1029/96JC02776 CrossRefGoogle Scholar
  48. Marshall J, Adcroft A, Campin JM, Hill C (2004) Atmosphere-ocean modeling exploiting fluid isomorphisms. Mon Weather Rev 132:2882–2894CrossRefGoogle Scholar
  49. Marshall J, Ferreira D, Campin JM, Enderton D (2007) Mean climate and variability of the atmosphere and ocean on an aquaplanet. J Atmos Sci 64:4270.  https://doi.org/10.1175/2007JAS2226.1 CrossRefGoogle Scholar
  50. Milnor J (1985) On the concept of attractor. Commun Math Phys 99(2):177–195.  https://doi.org/10.1007/BF01212280 CrossRefGoogle Scholar
  51. Moloney NR, Faranda D, Sato Y (2019) An overview of the extremal index. Chaos 29(2):022101.  https://doi.org/10.1063/1.5079656 CrossRefGoogle Scholar
  52. Molteni F (2003) Atmospheric simulations using a GCM with simplified physical parametrizations. I: model climatology and variability in multidecadal experiments. Clim Dyn 20:175–191CrossRefGoogle Scholar
  53. Nguyen AT, Menemenlis D, Kwok R (2011) Arctic ice-ocean simulation with optimized model parameters: approach and assessment. J Geophys Res (Oceans) 116:C04025.  https://doi.org/10.1029/2010JC006573 CrossRefGoogle Scholar
  54. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436.  https://doi.org/10.1038/20859 CrossRefGoogle Scholar
  55. Pierrehumbert R, Abbot D, Voigt A, Koll D (2011) Climate of the neoproterozoic. Annu Rev Earth Planet Sci 39(1):417–460.  https://doi.org/10.1146/annurev-earth-040809-152447 CrossRefGoogle Scholar
  56. Pohl A, Donnadieu Y, Le Hir G, Buoncristiani JF, Vennin E (2014) Effect of the Ordovician paleogeography on the (in)stability of the climate. Clim Past 10:2053–2066.  https://doi.org/10.5194/cp-10-2053-2014 CrossRefGoogle Scholar
  57. Poulsen CJ, Pierrehumbert RT, Jacob RL (2001) Impact of ocean dynamics on the simulation of the neoproterozoic “snowball Earth”. Geophys Res Lett 28:1575–1578.  https://doi.org/10.1029/2000GL012058 CrossRefGoogle Scholar
  58. Rose BEJ (2015) Stable ‘WaterBelt’ climates controlled by tropical ocean heat transport: a nonlinear coupled climate mechanism of relevance to Snowball Eart. J Geophys Res Atmos 120:1404–1423.  https://doi.org/10.1002/2014JD022659 CrossRefGoogle Scholar
  59. Rose BEJ, Marshall J (2009) Ocean heat transport, sea ice, and multiple climate states: insights from energy balance models. J Atmos Sci 66:2828.  https://doi.org/10.1175/2009JAS3039.1 CrossRefGoogle Scholar
  60. Rose BEJ, Ferreira D, Marshall J (2013) The role of oceans and sea ice in abrupt transitions between multiple climate states. J Clim 26:2862–2879.  https://doi.org/10.1175/JCLI-D-12-00175.1 CrossRefGoogle Scholar
  61. Saltzman B (1983) Climatic systems analysis. Adv Geophys 25:173–233.  https://doi.org/10.1016/S0065-2687(08)60174-0 CrossRefGoogle Scholar
  62. Schubert S, Lucarini V (2016) Dynamical analysis of blocking events: spatial and temporal fluctuations of covariant Lyapunov vectors. Q J R Meteorol Soc 142:2143–2158.  https://doi.org/10.1002/qj.2808 1508.04002CrossRefGoogle Scholar
  63. Sellers WD (1969) A global climatic model based on the energy balance of the earth-atmosphere system. J Appl Meteorol 8:392–400CrossRefGoogle Scholar
  64. Shao ZG (2017) Contrasting the complexity of the climate of the past 122,000 years and recent 2000 years. Sci Rep 7(4143):1–5.  https://doi.org/10.1038/s41598-017-04584-x Google Scholar
  65. Smith RL, Weissman I (1994) Estimating the extremal index. J R Stat Soc B 56(3):515–528Google Scholar
  66. Steffen W, Rockström J, Richardson K, Lenton TM, Folke C, Liverman D, Summerhayes CP, Barnosky AD, Cornell SE, Crucifix M, Donges JF, Fetzer I, Lade SJ, Scheffer M, Winkelmann R, Schellnhuber HJ (2018) Trajectories of the earth system in the anthropocene. Proc Natl Acad Sci 115(33):8252–8259.  https://doi.org/10.1073/pnas.1810141115. http://www.pnas.org/content/115/33/8252, http://www.pnas.org/content/115/33/8252.full.pdf
  67. Strogatz SH (1994) Nonlinear dynamics and chaos, with applications to physics, biology, chemistry, and engineering. Westview Press, BoulderGoogle Scholar
  68. Tang L, Lv H, Yang F, Yu L (2015) Complexity testing techniques for time series data: a comprehensive literature review. Chaos Solitons Fractals 81:117–135.  https://doi.org/10.1016/j.chaos.2015.09.002 CrossRefGoogle Scholar
  69. Tang Y, Li L, Dong W, Wang B (2016) Reducing the climate shift in a new coupled model. Sci Bull 61:488–494.  https://doi.org/10.1007/s11434-016-1033-y CrossRefGoogle Scholar
  70. Voigt A, Abbot DS (2012) Sea-ice dynamics strongly promote snowball earth initiation and destabilize tropical sea-ice margins. Clim Past 8(6):2079–2092.  https://doi.org/10.5194/cp-8-2079-2012 CrossRefGoogle Scholar
  71. Wild M, Folini D, Schär C, Loeb N, Dutton EG, König-Langlo G (2013) The global energy balance from a surface perspective. Clim Dyn 40:3107–3134.  https://doi.org/10.1007/s00382-012-1569-8 CrossRefGoogle Scholar
  72. Winton M (2000) A reformulated three-layer sea ice model. J Atmos Ocean Technol 17:525–531CrossRefGoogle Scholar
  73. Yang J, Peltier WR, Hu Y (2012) The initiation of modern soft and hard snowball Earth climates in CCSM4. Clim Past 8:907–918.  https://doi.org/10.5194/cp-8-907-2012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Environmental Sciences and Group of Applied PhysicsUniversity of GenevaGenevaSwitzerland
  2. 2.Section of Earth and Environmental SciencesUniversity of GenevaGenevaSwitzerland

Personalised recommendations