Skip to main content
Log in

Lagrangian study of the final warming in the southern stratosphere during 2002: Part II. 3D structure

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This two-part paper aims to provide a Lagrangian perspective of the final southern warming in spring of 2002, during which the stratospheric polar vortex (SPV) experienced a unique splitting. We approach the subject from a dynamical systems viewpoint and search for Lagrangian coherent structures using a Lagrangian descriptor that is applied to reanalysis data. Part I presents our methodology and focuses by means of a kinematic model, on the understanding of fundamental processes for filamentation and ultimately for vortex splitting on an isentropic surface in the middle stratosphere. The present Part II discusses the three dimensional evolution of the flow during the selected event. For this, we apply the definition of vortex boundary developed in Part I for guidance in the selection of trajectories to illuminate the evolving flow structures, and invoke a criterion that allows to justify why at an isentropic level a pinched vortex will split in later times. Lagrangian structures identified include surfaces that are several kilometers deep, and which a particle trajectory analysis confirms as barriers to the flow. The role of Lagrangian structures in determining the fate of particles during the SPV splitting is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Butler AH, Sjoberg JP, Seidel DJ, Rosenlof KH (2017) A sudden stratospheric warming compendium. Earth Syst Sci Data 9(1):63–76

    Article  Google Scholar 

  • Charlton AJ, O’Neill A, Lahoz WA, Berrisford P (2005) The splitting of the stratospheric polar vortex in the southern hemisphere, september 2002: Dynamical evolution. J Atmos Sci 66:590–602

    Article  Google Scholar 

  • Curbelo J, García-Garrido VJ, Mechoso CR, Mancho AM, Wiggins S, Niang C (2017) Insights into the three-dimensional lagrangian geometry of the antarctic polar vortex. Nonlinear Process Geophys 24(3):379–392

    Article  Google Scholar 

  • García-Garrido VJ, Curbelo J, Mancho AM, Wiggins S, Mechoso CR (2018) The application of lagrangian descriptors to 3D vector fields. Regul Chaotic Dyn 23:551–568

    Article  Google Scholar 

  • Manney GL, Farrara JD, Mechoso CR (1991) The behavior of wave 2 in the southern hemisphere stratosphere during late winter and early spring. J Atmos Sci 48:976–998

    Article  Google Scholar 

  • Manney GL, Farrara JD, Mechoso CR (1994) Simulations of the february 1979 stratospheric sudden warming: model comparisons and three-dimensional evolution. Mon Weather Rev 122(6):1115–1140

    Article  Google Scholar 

  • Matthewman NJ, Esler JG, Charlton-Perez AJ, Polvani LM (2009) A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure. J Clim 22(6):1566–1585

    Article  Google Scholar 

  • Mechoso CR, O’Neill A, Pope VD, Farrara JD (1988) A study of the stratospheric final warming of 1982 in the southern hemisphere. Q J R Meteorol Soc 114:1365–1384

    Article  Google Scholar 

  • Mezić I, Wiggins S (1994) On the integrability and perturbation of three-dimensional fluid flows with symmetry. J Nonlinear Sci 4(1):157–194

    Article  Google Scholar 

  • Nishii K, Nakamura H (2004) Tropospheric influence on the diminished antarctic ozone hole in September 2002. Geophys Res Lett 31(L16):103

    Google Scholar 

  • O’Neill A, Oatley CL, Charlton-Perez AJ, Mitchell DM, Jung T (2017) Vortex splitting on a planetary scale in the stratosphere by cyclogenesis on a subplanetary scale in the troposphere. Q J R Meteorol Soc 143(703):691–705

    Article  Google Scholar 

  • Peters D, Waugh DW (2003) Rossby wave breaking in the southern hemisphere wintertime upper troposphere. Mon Weather Rev 131(11):2623–2634

    Article  Google Scholar 

  • Quintanar AI, Mechoso CR (1995) Quasi-stationary waves in the southern hemisphere. Part I: observational data. J Clim 4:2659–2672

    Article  Google Scholar 

  • Schoeberl MR, Newman PA (1995) A multiple-level trajectory analysis of vortex filaments. J Geophys Res Atmos 100(D12):25,801–25,815

    Article  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsl 110:25–35

    Google Scholar 

  • Wiggins S (1994) Normally hyperbolic invariant manifolds in dynamical systems. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

J. Curbelo and A. M. Mancho were supported by MINECO grant MTM2014-56392-R. J. Curbelo and A. M. Mancho are supported by ONR Grant no. N00014-17-1-3003. C. R. Mechoso was supported by the U.S. NSF Grant AGS-1245069. The research of S. Wiggins is supported by ONR Grant No. N00014-01-1-0769. Additional support was provided by the U.S. NSF Grant AGS-1832842.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jezabel Curbelo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is the second part of the two-part paper which Part I is “Lagrangian study of the final warming in the southern stratosphere during 2002: Part I. The vortex splitting at upper levels” (https://doi.org/10.1007/s00382-019-04832-y).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3834 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curbelo, J., Mechoso, C.R., Mancho, A.M. et al. Lagrangian study of the final warming in the southern stratosphere during 2002: Part II. 3D structure. Clim Dyn 53, 1277–1286 (2019). https://doi.org/10.1007/s00382-019-04833-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-04833-x

Keywords

Navigation