Advertisement

A PMIP3 narrative of modulation of ENSO teleconnections to the Indian summer monsoon by background changes in the Last Millennium

  • Charan Teja Tejavath
  • Karumuri AshokEmail author
  • Supriyo Chakraborty
  • Rengaswamy Ramesh
Article

Abstract

Using nine model simulations from the PMIP3, we study simulated mean Indian summer (June–September) climate and its variability during the Last Millennium (LM; CE0850-1849) with emphasis on the Medieval Warm Period (MWP; CE1000-1199) and Little Ice Age (LIA; CE1550-1749), after validation of the simulated ‘current day (CE1850-2005)’ climate and trends. We find that the simulated above (below) mean-LM summer temperatures during the MWP (LIA) are associated with relatively higher (lower) moisture, and relatively higher (lower) number of concurrent El Niños (La Niñas). Importantly, the models simulate higher (lower) Indian summer monsoon rainfall (ISMR) during the MWP (LIA) compared to the LM-mean, notwithstanding a strong simulated negative correlation between NINO3.4 index and the area-averaged ISMR. Interestingly, the percentage of the simulated strong El Niños (La Niñas) associated with negative (positive) ISMR anomalies is higher (lower) in the LIA (MWP). This nonlinearity is explained by the simulated background climate changes, as follows. Distribution of simulated anomalous 850 hPa boreal summer velocity potential during MWP in models indicates, relative to the mean LM conditions, a zone of anomalous convergence in the central tropical Pacific flanked by two zones of divergence, i.e. a westward shift in the Walker circulation. The anomalous divergence centre in the west during the MWP also extends into the equatorial eastern Indian Ocean, triggering in an anomalous convergence zone over India and relatively higher moisture transport therein and therefore excess rainfall during the MWP as compared to the LM-mean, and hence an apparent weakening in the El Niño impact.

Notes

Acknowledgements

KA, SC, and CTT thank the contribution of Prof. Rengaswamy Ramesh, their co-author who sadly passed away on 2 April 2018. We thank Dr. Johann H. Jungclaus, the Max Planck Institute for Meteorology (MPI-M) Hamburg for sharing the model outputs. Constructive comments from two anonymous reviewers helped to improve the manuscript. The GrADS, Ferret, and NCL graphics tools, and the CDO statistical software have been used in this study. KA and SC acknowledge the Climate Change programme (SPLICE) of the Department of Science and Technology, Government of India, for grant No. DST/CCP/NCM/76/2017(G) for this research. CTT acknowledges a PhD fellowship grant from the UGC, Govt. of India to carry out this work.

Supplementary material

382_2019_4718_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1817 KB)
382_2019_4718_MOESM2_ESM.docx (12 kb)
Supplementary material 2 (DOCX 12 KB)
382_2019_4718_MOESM3_ESM.docx (9 kb)
Supplementary material 3 (DOCX 8 KB)

References

  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeor 4(6):1147–1167CrossRefGoogle Scholar
  2. Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28(23):4499–4502CrossRefGoogle Scholar
  3. Ashok K, Guan Z, Saji NH, Yamagata T (2004) Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J Climate 17(16):3141–3155CrossRefGoogle Scholar
  4. Ashok K, Behera S, Rao AS, Weng HY, Yamagata T (2007) El Nino Modoki and its teleconnection. J Geophys Res 112:C11007.  https://doi.org/10.1029/2006JC003798 CrossRefGoogle Scholar
  5. Behera SK, Krishnan R, Yamagata T (1999) Unusual ocean–atmosphere conditions in the tropical Indian Ocean during 1994. Geophys Res Lett 26:3001–3004CrossRefGoogle Scholar
  6. Berkelhammer M, Sinha A, Mudelsee M, Cheng H, Edwards RL, Cannariato K (2010) Persistent multidecadal power of the Indian Summer Monsoon. Earth Planet Sci Lett 290:166–172CrossRefGoogle Scholar
  7. Berkelhammer M, Sinha A, Stott L, Cheng H, Pausata FSR, Yoshimura K (2012) An abrupt shift in the Indian monsoon 4000 years ago. Geophys Monogr Ser 198:75–87Google Scholar
  8. Cai W et al (2015) ENSO and greenhouse warming. Nature Clim Change 5:849–859CrossRefGoogle Scholar
  9. Chakraborty S, Goswami BN, Dutta K (2012) Pacific coral oxygen isotope and the tropospheric temperature gradient over Asian monsoon region: a tool to reconstruct past Indian summer monsoon rainfall. J Quat Sci 27(3):269–278.  https://doi.org/10.1002/jqs.1541 CrossRefGoogle Scholar
  10. Cobb KM, Charles CD, Cheng H, Edwards RL, El Nino/Southern Oscillation and tropical Pacific climate during the last millennium: Nature. Vol. 424, no. 6946, pp. 271–276Google Scholar
  11. Collins M (2000) The El Nino Southern Oscillation in the Second Hadley Centre Coupled Model and Its Response to Greenhouse Warming, (1997), 1299–1312Google Scholar
  12. Conroy JL, Restrepo, Alejandra, Overpeck JT, Steinitz-Kannan M, Cole JE, Bush MB, Colinvaux PA, Unprecedented recent warming of surface temperatures in the eastern tropical Pacific Ocean, 2008/12/21/online,vl-2, Nature Publishing Group,  https://doi.org/10.1038/ngeo390
  13. Denniston Rhawn F, Caroline C, Ummenhofer AD, Wanamaker MS, Lachniet G, Villarini Y, Asmerom VJ, Polyak, Kristian J, Passaro J, Cugley D, Woods, William F, Humphreys (2016) Expansion and contraction of the Indo-Pacific Tropical Rain Belt over the Last Three Millennia, Scientific Reports 6.  https://doi.org/10.1038/srep34485
  14. DiNezio Pedro N, Gabriel A, Amy C (2013) Detectability of changes in the walker circulation in response to global warming. J Clim.  https://doi.org/10.1175/JCLI-D-12-00531.1 Google Scholar
  15. Dixit Y (2013) Holocene monsoon variability inferred from paleolake sediments in North-western India PhD thesis University of Cambridge, UKGoogle Scholar
  16. Dixit Y, Tandon SK (2016) Earth-science reviews hydroclimatic variability on the Indian subcontinent in the past millennium? Review and assessment. Earth-Sci Rev 161:1–15.  https://doi.org/10.1016/j.earscirev.2016.08.001 CrossRefGoogle Scholar
  17. Dixit Y, Hodell DA, Petrie CA (2014a) Abrupt weakening of the summer monsoon in northwest India ~ 4100 year ago. Geology 42:339–342CrossRefGoogle Scholar
  18. Dixit Y, Hodell DA, Sinha R, Petrie CA (2014b) Abrupt weakening of the Indian summer monsoon at 8.2 kyr B.P. Earth Planet. Sci Lett 391:16–23Google Scholar
  19. Dixit Y, Hodell D, Sinha R, Petrie C (2015) Oxygen isotope analysis of multiple, single ostracod valves as a proxy for combined variability in seasonal temperature and lake water oxygen isotopes. J Paleolimnol 53:35–45CrossRefGoogle Scholar
  20. Dutt S, Gupta AK, Clemens SC, Cheng H, Singh RK, Kathayat G, Edwards RL (2015) Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years BP. Geophys Res Lett 42:5526–5532CrossRefGoogle Scholar
  21. Emile-Geay J, Cane M, Seager R, Kaplan A, Almasi P (2007) El Nino as a mediator for the solar influence on climate. Paleoceanography 22:PA3210.  https://doi.org/10.1029/2006PA001304 CrossRefGoogle Scholar
  22. Feba F, Ashok K, Ravichandran M, (2018), Role of changed Indo-Pacific atmospheric circulation in the recent disconnect between the Indian summer monsoon and ENSO. Clim Dyn.  https://doi.org/10.1007/s00382-018-4207-2 Google Scholar
  23. Fedorov AV, Philander SG (2000) Is El Nino changing? Science 288:1997–2002Google Scholar
  24. Fleitmann D, Burns SJ, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300:1737–1739CrossRefGoogle Scholar
  25. Fleitmann D, Burns SJ, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Subbary A-A, Buettner A, Hippler D, Matter A (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26:170–188CrossRefGoogle Scholar
  26. Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J Geophys Res 113:D23111CrossRefGoogle Scholar
  27. Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314(5804):1442–1445CrossRefGoogle Scholar
  28. Graham NE, Hughes MK, Ammann CM, Cobb KM, Hoerling MP, Kennett DJ, Kennett JP, Rein B, Stott L, Wigand PE, Xu T (2007) Tropical Pacific mid-latitude teleconnections in medieval times. Clim Change 83:241–285CrossRefGoogle Scholar
  29. Graham NE, Ammann CM, Fleitmann D, Cobb KM, Luterbacher J (2010) Support for global climate reorganization during the Medieval Climate Anomaly. Clim Dyn 37:1217–1245CrossRefGoogle Scholar
  30. Grove JM (1988) The Little Ice Age.Menthuen, LondonGoogle Scholar
  31. Guhathakurta P, Rajeevan M (2008) Trends in the rainfall pattern over India. Int J Climatol 28:1453–1469.  https://doi.org/10.1002/joc.1640 CrossRefGoogle Scholar
  32. Gupta AK, Anderson DM, Overpeck JT (2003) Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421:354–357CrossRefGoogle Scholar
  33. Henke Lilo MK, Hugo Lambert F, Dan J Was the Little Ice Age more or less El Niño-like than the Medieval Climate Anomaly? Evidence from hydrological and temperature proxy data. Clim Past, 13, 267–3012017 http://www.clim-past.net/13/267/2017/  https://doi.org/10.5194/cp-13-267-2017
  34. Hersbach H (2015) ERA-20CM: a twentieth-century atmospheric model ensemble, (July), 2350–2375.  https://doi.org/10.1002/qj.2528
  35. Iles CE, Hegerl GC (2014) The global precipitation response to volcanic eruptions in the CMIP5 models. Environ Res Lett 9(10):104012CrossRefGoogle Scholar
  36. IPCC (2013) The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker. In: Qin TF,D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.) Climate Change 2013. Cambridge University Press, Cambridge, 1535 pp.  https://doi.org/10.1017/CBO9781107415324 Google Scholar
  37. Kalnay et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–470CrossRefGoogle Scholar
  38. Keshavamurty RN (1982) Response of the atmosphere to sea surface temperature anomalies over the equatorial Pacific and the teleconnections of the Southern Oscillation. J Atmos Sci 39:1241–1259CrossRefGoogle Scholar
  39. Kitoh A (2007) Variability of Indian monsoon-ENSO relationship in a 1000-year MRI-CGCM2.2 simulation. Nat Hazards 42(2):261–272.  https://doi.org/10.1007/s11069-006-9092-z CrossRefGoogle Scholar
  40. Kripalani RH, Kulkarni A (1999) Climatological impact of El Niño/La Niña on the Indian monsoon: a new perspective. Weather 52:39–46CrossRefGoogle Scholar
  41. Krishnan R, Sabin TP, Vellore R, Mujumdar M, Sanjay J, Goswami BN (2016) Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world. Clim Dyn 47:1007–1027.  https://doi.org/10.1007/s00382-015-2886-5 CrossRefGoogle Scholar
  42. Kumar KK, Rajagopalan B, Cane MA (1999) On the Weakening Relationship Between the Indian Monsoon and ENSO, 284(June), 2156–2160Google Scholar
  43. Lamb HH (1965) The early medieval warm epoch and its sequel. Palaeogeogr Palaeoclimatol 1:13–37CrossRefGoogle Scholar
  44. Lehmann J, Coumou D, Frieler K (2015) Increased record-breaking precipitation events under global warming. Clim Change.  https://doi.org/10.1007/s10584-015-1434-y Google Scholar
  45. Lewis SC, Legrande AN (2015) Stability of ENSO and its tropical Pacific teleconnections over the Last Millennium. Climate of the Past 11(10):1347–1360.  https://doi.org/10.5194/cp-11-1347-2015 CrossRefGoogle Scholar
  46. Liu F et al. (2016) Global monsoon precipitation responses to large volcanic eruptions. Sci Rep.  https://doi.org/10.1038/srep24331 Google Scholar
  47. Mann ME, Cane MA, Zebiak SE, Clement A (2005) Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J Clim 18:447–456CrossRefGoogle Scholar
  48. Mann M et al (2009) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326:1256–1260CrossRefGoogle Scholar
  49. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Caspar A. Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly Science 27 Nov 2009: Vol. 326, Issue 5957, pp. 1256–1260  https://doi.org/10.1126/science.1177303
  50. Min YM (2008) A Probabilistic Multimodel Ensemble Approach to Seasonal Prediction, 812–828.  https://doi.org/10.1175/2008WAF2222140.1
  51. Nakamura A, Yokoyama Y, Maemoku H, Yagi H, Okamura M, Matsuoka H, Miyake N, Osada T, Adhikari DP, Dangol V (2015) Weak monsoon event at 4.2 ka recorded in sediment from Lake Rara, Himalayas. Quat.  https://doi.org/10.1016/j.quaint.2015.05.053
  52. Neff U, Burns SJ, Mangini A, Mudelsee M, Fleitmann D, Matter A (2001) Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411:290–293CrossRefGoogle Scholar
  53. PAGES 2 k Consortium (2013) Continental-scale temperature variability during the last two millennia. Nature Geosci 6:339–346CrossRefGoogle Scholar
  54. Pant GB, Rupa Kumar K (1997) Climates of South Asia. J. Wiley and Sons, 317 ppGoogle Scholar
  55. Ponton C, Giosan L, Eglinton TI, Fuller DQ, Johnson JE, Kumar P, Collett TS (2012) Holocene aridification of India. Geophys Res Lett 39:L03704CrossRefGoogle Scholar
  56. Power S, Delage F, Chung C, Kociuba G, Keay K (2013) Robust twenty-first-century projections of El Niño and related precipitation variability. Nature 502:541–545.  https://doi.org/10.1038/nature12580 CrossRefGoogle Scholar
  57. Prasad S, Enzel Y (2006) Holocene paleoclimates of India. Quat Res 66(3):442–453CrossRefGoogle Scholar
  58. Prasad S, Anoop A, Riedel N, Sarkar S, Menzel P, Basavaiah N, Krishnan R, Fuller D, Plessen B, Gaye B, Röhl, U,Wilkes,H, Sachse D, Sawant R, Wiesner B, Stebich M (2014) Prolonged monsoon droughts and links to Indo-Pacific warm pool: a Holocene record from Lonar Lake, Central India. Earth Planet Sci Lett 391:171–182CrossRefGoogle Scholar
  59. Rajeevan M, Bhate J, Kale JD, Lal B (2006) High resolution daily gridded rainfall data for the Indian region?: Analysis of break and active monsoon spells, 91(3)Google Scholar
  60. Ramesh R, Tiwari M, Chakraborty S, Managave SR, Yadava MG, Sinha DK (2010) Retrieval of south asian monsoon variation during the holocene from natural climate archives. Curr Sci 99(12):1770–1786Google Scholar
  61. Revadekar JV, Kothawale DR, Patwardhan SK, Pant GB, Kumar KR (2012) Extremes over India, 1133–1155.  https://doi.org/10.1007/s11069-011-9895-4
  62. Roxy MK, Ritika K, Terray P, Murtugudde R, Ashok K, BN Gowswami Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient—Nature communications, 2015Google Scholar
  63. Sano M, Ramesh R, Sheshshayee M, Sukumar R (2011) Increasing aridity over the past 223 years in the Nepal Himalaya inferred from a tree-ring δ18O chronology. The Holocene, 1–9Google Scholar
  64. Sarkar A, Ramesh R, Somayajulu BLK, Agnihotri R, Jull AJT, Burr OS (2000) High resolution Holocene monsoon record from the eastern Arabian Sea. Earth Planet Sci Lett 177(3–4):209–218.  https://doi.org/10.1016/S0012-821X(00)00053-4 CrossRefGoogle Scholar
  65. Schmidt MWI, Co-authors. Persistence of soil organic matter as an ecosystem property. Nature. 2011/10/06/print, 478, Nature Publishing Group,  https://doi.org/10.1038/nature10386
  66. Schmidt GA, Jungclaus JH, Ammann CM, Bard E, Braconnot P, Crowley TJ, Delaygue G, Joos F, Krivova NA, Muscheler R, Otto-Bliesner BL, Pongratz J, Shindell DT, Solanki SK, Steinhilber F, Vieira LEA (2012) Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). Geosci Model Dev 5:185–191.  https://doi.org/10.5194/gmd-5-185-2012 CrossRefGoogle Scholar
  67. Sikka DR (1980) Some aspects of the large scale fluctuations of summer monsoon rainfall over India in relation to fluctuations in the planetary and regional scale circulation parameters, Proc. Ind. Acad. Sci., 89, 179–195Google Scholar
  68. Sinha A, Cannariato KG, Stott LD, Cheng H, Edwards RL, Yadava MG, Ramesh R, Singh IB (2007) A 900-year (600 to 1500 AD) record of the Indian summer monsoon precipitation from the coremonsoon zone of India. Geophys. Res. Lett. 34Google Scholar
  69. Sinha A, Gayatri Kathayat H, Cheng, Sebastian FM, Breitenbach M, Berkelhammer M, Mudelsee J (2015) Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia. Nat Commun.  https://doi.org/10.1038/ncomms7309 Google Scholar
  70. Staubwasser M, Sirocko F, Grootes PM, Segl M (2003) Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophys Res Lett 30:1425.  https://doi.org/10.1029/2002GL016822 CrossRefGoogle Scholar
  71. Stocker TF, Qin D, Plattner G-K, Alexander LV, Allen SK, Bindoff NL, Bréon F-M, Church JA, Cubasch U, Emori S, Forster P, Friedlingstein P, N.Gillett JM, Gregory DL, Hartmann E, Jansen B, Kirtman R, Knutti K, Krishna Kumar P, Lemke J, Marotzke V, Masson-Delmotte GA, Meehl II, Mokhov S, Piao V, Ramaswamy D, Randall M, Rhein M, Rojas C, Sabine D, Shindell LD, Talley DG, Vaughan, Xie S-P (2013) Technical Summary. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, Qin TF,D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.)]. Cambridge University Press, Cambridge, pp 33–115,  https://doi.org/10.1017/CBO9781107415324$4005 Google Scholar
  72. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. B Am Meteorol Soc 93:485–498.  https://doi.org/10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  73. Thamban M, Kawahata H, Rao VP (2007) Indian Summer Monsoon Variability during the Holocene as Recorded in Sediments of the Arabian Sea: Timing and Implications. J Oceanogr 63(6):1009–1020 2007CrossRefGoogle Scholar
  74. Titchner HA, Rayner NA (2014) The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J Geophys Res Atmos 119:2864–2889.  https://doi.org/10.1002/2013JD020316 CrossRefGoogle Scholar
  75. Tiwari M, Ramesh R, Somayajulu B, Jull A, Burr G (2005) Solar control of southwest monsoon on centennial timescales. Curr Sci 89:1583–1588Google Scholar
  76. Trenberth KE, Caron JM, Stepaniak DP, Worley S (2002) Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures, J Geophys Res.  https://doi.org/10.1029/2000JD000298 Google Scholar
  77. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing 441:73–76.  https://doi.org/10.1038/nature04744
  78. Wanner H, Beer J, Buetikofer J, Crowley TJ, Cubasch U, Flueckiger J, Goosse H, Grosjean M, Joos F, Kaplan JO (2008) Mid-to Late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828CrossRefGoogle Scholar
  79. Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 36:L12702.  https://doi.org/10.1029/2009GL038710 CrossRefGoogle Scholar
  80. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Amer Meteorol Soc 78:2539–2558CrossRefGoogle Scholar
  81. Yadava MG, Ramesh RR (2005) Monsoon reconstruction from radiocarbon dated tropical speleothems. The Holocene 15:48–59CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Charan Teja Tejavath
    • 1
  • Karumuri Ashok
    • 1
    Email author
  • Supriyo Chakraborty
    • 2
  • Rengaswamy Ramesh
    • 3
  1. 1.Centre for Earth, Ocean and Atmospheric SciencesUniversity of HyderabadHyderabadIndia
  2. 2.Indian Institute of Tropical MeteorologyPuneIndia
  3. 3.School of Earth and Planetary SciencesNISERBhubaneswarIndia

Personalised recommendations