Advertisement

Biogeophysical feedback of phytoplankton on Arctic climate. Part II: Arctic warming amplified by interactive chlorophyll under greenhouse warming

  • Hyung-Gyu Lim
  • Jong-Seong KugEmail author
  • Jong-Yeon Park
Article

Abstract

It has been shown that the interaction between marine phytoplankton and climate systems may intensify Arctic warming in the future via shortwave heating associated with increased spring chlorophyll bloom. However, the changes of chlorophyll variability and its impact on the Arctic future climate are uncomprehended. Lim et al. (Clim Dyn.  https://doi.org/10.1007/s00382-018-4450-6, 2018a) (Part I) suggested that two nonlinear rectifications of chlorophyll variability play cooling role in present-day climate. In this study, we suggest that the decreased interannual chlorophyll variability may amplify Arctic surface warming (+ 10% in both regions) and sea ice melting (− 13% and − 10%) in Kara-Barents Seas and East Siberian-Chukchi Seas in boreal winter, respectively. Projections of earth system models show a future decrease in chlorophyll both mean concentration and interannual variability via sea ice melting and intensified surface-water stratification in summer. We found that suggested two nonlinear processes in Part I will be reduced by about 31% and 20% in the future, respectively, because the sea ice and chlorophyll variabilities, which control the amplitudes of nonlinear rectifications, are projected to decrease in the future climate. The Arctic warming is consequently enhanced by the weakening of the cooling effects of the nonlinear rectifications. Thus, this additional biological warming will contribute to future Arctic warming. This study suggests that effects of the mean chlorophyll and its variability should be considered to the sensitivity of Arctic warming via biogeophysical feedback processes in future projections using earth system models.

Keywords

Chlorophyll variability Arctic amplification Bio-optical effect Biogeochemical model Biogeophysical feedback Ice–phytoplankton coupling 

Notes

Acknowledgements

This work is supported by the project titled ‘[Korea-Arctic Ocean Observing System (K-AOOS), KOPRI, 20160245]’, funded by the MOF, Korea, and the National Research Foundation of Korea (NRF-2018R1A5A1024958). H.-G. Lim is supported by Hyundai Motor Chung Mong-Koo Foundation.

References

  1. Ardyna M, Babin M, Gosselin M, Devred E, Rainville L, Tremblay J (2014) Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys Res Lett 41:6207–6212CrossRefGoogle Scholar
  2. Arrigo KR, van Dijken G, Pabi S (2008) Impact of a shrinking Arctic ice cover on marine primary production. Geophys Res Lett 35  https://doi.org/10.1029/2008gl035028
  3. Arrigo KR, Perovich DK, Pickart RS, Brown ZW, Van Dijken GL, Lowry KE, Mills MM, Palmer MA, Balch WM, Bahr F (2012) Massive phytoplankton blooms under Arctic sea ice. Science 336:1408–1408CrossRefGoogle Scholar
  4. Arrigo KR, Perovich DK, Pickart RS, Brown ZW, van Dijken GL, Lowry KE, Mills MM, Palmer MA, Balch WM, Bates NR, Benitez-Nelson CR, Brownlee E, Frey KE, Laney SR, Mathis J, Matsuoka A, Greg Mitchell B, Moore GWK, Reynolds RA, Sosik HM, Swift JH (2014) Phytoplankton blooms beneath the sea ice in the Chukchi sea. Deep Sea Res Part II 105:1–16.  https://doi.org/10.1016/j.dsr2.2014.03.018 CrossRefGoogle Scholar
  5. Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752.  https://doi.org/10.1038/nature05317. https://www.nature.com/articles/nature05317#supplementary-information
  6. Boé J, Hall A, Qu X (2009) September sea–ice cover in the Arctic Ocean projected to vanish by 2100. Nat Geosci 2:341.  https://doi.org/10.1038/ngeo467 CrossRefGoogle Scholar
  7. Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP, Gehlen M, Halloran P, Heinze C, Ilyina T, Séférian R, Tjiputra J, Vichi M (2013) Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10:6225–6245.  https://doi.org/10.5194/bg-10-6225-2013 CrossRefGoogle Scholar
  8. Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past century. Nature 466:591.  https://doi.org/10.1038/nature09268. https://www.nature.com/articles/nature09268#supplementary-information
  9. Cabré A, Marinov I, Leung S (2015) Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models. Clim Dyn 45:1253–1280CrossRefGoogle Scholar
  10. Comiso JC (2003) Warming trends in the Arctic from clear sky satellite observations. J Clim 16:3498–3510  https://doi.org/10.1175/1520-0442(2003)016%3C3498:wtitaf%3E2.0.co;2 CrossRefGoogle Scholar
  11. Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett.  https://doi.org/10.1029/2007GL031972 Google Scholar
  12. Deser C, Haiyan T (2013) Recent Trends in Arctic Sea Ice and the Evolving Role of Atmospheric Circulation Forcing, 1979–2007. In: Arctic Sea ice decline: observations, projections, mechanisms, and implications. Geophysical Monograph Series.  https://doi.org/10.1029/180GM03
  13. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Ann Rev Mar Sci 4:11–37.  https://doi.org/10.1146/annurev-marine-041911-111611 CrossRefGoogle Scholar
  14. Dunne JP, John JG, Shevliakova E, Stouffer RJ, Krasting JP, Malyshev SL, Milly PCD, Sentman LT, Adcroft AJ, Cooke W, Dunne KA, Griffies SM, Hallberg RW, Harrison MJ, Levy H, Wittenberg AT, Phillips PJ, Zadeh N (2013) GFDL’s ESM2 global coupled climate–carbon earth system models. Part II: carbon system formulation and baseline simulation characteristics. J Clim 26:2247–2267.  https://doi.org/10.1175/jcli-d-12-00150.1 CrossRefGoogle Scholar
  15. Dunstan PK, Foster SD, King E, Risbey J, O’Kane TJ, Monselesan D, Hobday AJ, Hartog JR, Thompson PA (2018) Global patterns of change and variation in sea surface temperature and chlorophyll a. Sci Rep 8:14624.  https://doi.org/10.1038/s41598-018-33057-y CrossRefGoogle Scholar
  16. Fan S-M, Moxim WJ, Levy H (2006) Aeolian input of bioavailable iron to the ocean. Geophys Res Lett 33:L07602.  https://doi.org/10.1029/2005GL024852 Google Scholar
  17. Frey KE, Moore GWK, Cooper LW, Grebmeier JM (2015) Divergent patterns of recent sea ice cover across the Bering, Chukchi, and Beaufort seas of the Pacific Arctic Region. Prog Oceanogr 136:32–49.  https://doi.org/10.1016/j.pocean.2015.05.009 CrossRefGoogle Scholar
  18. Green PA, Vörösmarty CJ, Meybeck M, Galloway JN, Peterson BJ, Boyer EW (2004) Pre-industrial and contemporary fluxes of nitrogen through rivers: a global assessment based on typology. Biogeochemistry 68:71–105.  https://doi.org/10.1023/b:biog.0000025742.82155.92 CrossRefGoogle Scholar
  19. Griffies SM (2012) Elements of the modular ocean model (MOM). NOAA Geophysical Fluid Dynamics Laboratory, PrincetonGoogle Scholar
  20. Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293.  https://doi.org/10.1038/nature06592 CrossRefGoogle Scholar
  21. Haas C, Pfaffling A, Hendricks S, Rabenstein L, Etienne JL, Rigor I (2008) Reduced ice thickness in arctic transpolar drift favors rapid ice retreat. Geophys Res Lett.  https://doi.org/10.1029/2008GL034457 Google Scholar
  22. Holland MM, Serreze MC, Stroeve J (2010) The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models. Clim Dyn 34:185–200CrossRefGoogle Scholar
  23. Horowitz LW, Walters S, Mauzerall DL, Emmons LK, Rasch PJ, Granier C, Tie X, Lamarque J-F, Schultz MG, Tyndall GS, Orlando JJ, Brasseur GP (2003) A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART, version 2. J Geophys Res Atmos.  https://doi.org/10.1029/2002JD002853 Google Scholar
  24. Kashiwase H, Ohshima KI, Nihashi S, Eicken H (2017) Evidence for ice–ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone. Sci Rep 7:8170.  https://doi.org/10.1038/s41598-017-08467-z CrossRefGoogle Scholar
  25. Klunder MB, Bauch D, Laan P, de Baar HJW, van Heuven S, Ober S (2012) Dissolved iron in the Arctic shelf seas and surface waters of the central Arctic Ocean: impact of Arctic river water and ice-melt. J Geophys Res Oceans 117:C01027.  https://doi.org/10.1029/2011JC007133 CrossRefGoogle Scholar
  26. Kwok R, Rothrock DA (2009) Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys Res Lett.  https://doi.org/10.1029/2009GL039035 Google Scholar
  27. Lawrence J, Popova E, Yool A, Srokosz M (2015) On the vertical phytoplankton response to an ice-free Arctic Ocean. J Geophys Res Oceans 120:8571–8582.  https://doi.org/10.1002/2015JC011180 CrossRefGoogle Scholar
  28. Lengaigne M, Menkes C, Aumont O, Gorgues T, Bopp L, André J-M, Madec G (2007) Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model. Clim Dyn 28:503–516.  https://doi.org/10.1007/s00382-006-0200-2 CrossRefGoogle Scholar
  29. Lengaigne M, Madec G, Bopp L, Menkes C, Aumont O, Cadule P (2009) Bio-physical feedbacks in the Arctic Ocean using an Earth system model. Geophys Res Lett 36Google Scholar
  30. Lim H-G, Kug J-S, Park J-Y (2018a) Biogeophysical feedback of phytoplankton on the Arctic climate. Part I: Impact of nonlinear rectification of interactive chlorophyll variability in the present-day climate. Clim Dyn.  https://doi.org/10.1007/s00382-018-4450-6 Google Scholar
  31. Lim H-G, Park J-Y, Kug J-S (2018b) Impact of chlorophyll bias on the tropical Pacific mean climate in an earth system model. Clim Dyn.  https://doi.org/10.1007/s00382-017-4036-8 Google Scholar
  32. Liu J, Song M, Horton RM, Hu Y (2013) Reducing spread in climate model projections of a September ice-free Arctic. Proc Natl Acad Sci 110:12571–12576.  https://doi.org/10.1073/pnas.1219716110 CrossRefGoogle Scholar
  33. Manizza M, Le Quéré C, Watson AJ, Buitenhuis ET (2005) Bio-optical feedbacks among phytoplankton, upper ocean physics and sea–ice in a global model. Geophys Res Lett 32:L05603.  https://doi.org/10.1029/2004GL020778 CrossRefGoogle Scholar
  34. Marzeion B, Timmermann A, Murtugudde R, Jin F-F (2005) Biophysical feedbacks in the tropical Pacific. J Clim 18:58–70CrossRefGoogle Scholar
  35. Maslanik JA, Fowler C, Stroeve J, Drobot S, Zwally J, Yi D, Emery W (2007) A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea–ice loss. Geophys Res Lett 34:L24501.  https://doi.org/10.1029/2007GL032043 CrossRefGoogle Scholar
  36. Min S-K, Son S-W, Seo K-H, Kug J-S, An S-I, Choi Y-S, Jeong J-H, Kim B-M, Kim J-W, Kim Y-H, Lee J-Y, Lee M-I (2015) Changes in weather and climate extremes over Korea and possible causes: a review. Asia-Pacific J Atmos Sci 51:103–121.  https://doi.org/10.1007/s13143-015-0066-5 CrossRefGoogle Scholar
  37. Morel A (1988) Optical modeling of the upper ocean in relation to its biogenous matter content(case I waters). J Geophys Res 93:749–710CrossRefGoogle Scholar
  38. Morel A, Antoine D (1994) Heating rate within the upper ocean in relation to its bio-optical state. J Phys Oceanogr 24:1652–1665CrossRefGoogle Scholar
  39. Nicolaus M, Katlein C, Maslanik J, Hendricks S (2012) Changes in Arctic sea ice result in increasing light transmittance and absorption. Geophys Res Lett.  https://doi.org/10.1029/2012GL053738 Google Scholar
  40. Overland JE, Wang M (2013) When will the summer Arctic be nearly sea ice free? Geophys Res Lett 40:2097–2101.  https://doi.org/10.1002/grl.50316 CrossRefGoogle Scholar
  41. Park JY, Kug JS, Badera J, Rolph R, Kwon M (2015) Amplified Arctic warming by phytoplankton under greenhouse warming. P Natl Acad Sci USA 112:5921–5926.  https://doi.org/10.1073/pnas.1416884112 CrossRefGoogle Scholar
  42. Peralta-Ferriz C, Woodgate RA (2015) Seasonal and interannual variability of pan-Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling. Prog Oceanogr 134:19–53.  https://doi.org/10.1016/j.pocean.2014.12.005 CrossRefGoogle Scholar
  43. Perovich DK, Light B, Eicken H, Jones KF, Runciman K, Nghiem SV (2007) Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: attribution and role in the ice-albedo feedback. Geophys Res Lett 34Google Scholar
  44. Perovich DK, Jones K, Light B, Eicken H, Markus T, Stroeve JC, Lindsay R (2011) Solar partitioning in a changing Arctic sea–ice cover.  https://doi.org/10.3189/172756411795931543
  45. Popova EE, Yool A, Coward AC, Dupont F, Deal C, Elliott S, Hunke E, Jin M, Steele M, Zhang J (2012) What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry. J Geophys Res Oceans 117:C00D12.  https://doi.org/10.1029/2011JC007112 CrossRefGoogle Scholar
  46. Sarmiento JL, Slater R, Barber R, Bopp L, Doney SC, Hirst AC, Kleypas J, Matear R, Mikolajewicz U, Monfray P, Soldatov V, Spall SA, Stouffer R (2004) Response of ocean ecosystems to climate warming. Global Biogeochem Cycles. doi: https://doi.org/10.1029/2003GB002134 Google Scholar
  47. Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea–ice cover. Science 315:1533–1536.  https://doi.org/10.1126/science.1139426 CrossRefGoogle Scholar
  48. Stroeve JC, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier WN (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39:L16502.  https://doi.org/10.1029/2012GL052676 CrossRefGoogle Scholar
  49. Tremblay J-É, Gagnon J (2009) The effects of irradiance and nutrient supply on the productivity of Arctic waters: a perspective on climate change. In: Influence of climate change on the changing arctic and sub-arctic conditions. Springer, pp 73–93Google Scholar
  50. Vancoppenolle M, Bopp L, Madec G, Dunne J, Ilyina T, Halloran PR, Steiner N (2013) Future Arctic Ocean primary productivity from CMIP5 simulations: uncertain outcome, but consistent mechanisms. Global Biogeochem Cycles 27:605–619.  https://doi.org/10.1002/gbc.20055 CrossRefGoogle Scholar
  51. Vichi M, Pinardi N, Masina S (2007) A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: Theory. J Mar Syst 64:89–109CrossRefGoogle Scholar
  52. Wang J, Zhang J, Watanabe E, Ikeda M, Mizobata K, Walsh JE, Bai X, Wu B (2009) Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys Res Lett 36Google Scholar
  53. Wassmann P, Reigstad M (2011) Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic couplingGoogle Scholar
  54. Winder M, Sommer U (2012) Phytoplankton response to a changing climate. Hydrobiologia 698:5–16.  https://doi.org/10.1007/s10750-012-1149-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Environmental Science and EngineeringPohang University of Science and Technology (POSTECH)PohangSouth Korea
  2. 2.Department of Earth and Environmental SciencesChonbuk National UniversityJeonjuSouth Korea

Personalised recommendations