Advertisement

Impact of surface temperature biases on climate change projections of the South Pacific Convergence Zone

  • Cyril DutheilEmail author
  • M. Bador
  • M. Lengaigne
  • J. Lefèvre
  • N. C. Jourdain
  • J. Vialard
  • S. Jullien
  • A. Peltier
  • C. Menkes
Article

Abstract

The South Pacific Convergence Zone (SPCZ) is poorly represented in global coupled simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), with trademark biases such as the tendency to form a “double Intertropical convergence zone” and an equatorial cold tongue that extends too far westward. Such biases limit our confidence in projections of the future climate change for this region. In this study, we use a downscaling strategy based on a regional atmospheric general circulation model that accurately captures the SPCZ present-day climatology and interannual variability. More specifically, we investigate the sensitivity of the projected rainfall response to either just correcting present-day CMIP5 Sea Surface Temperature (SST) biases or correcting projected SST changes using an emergent constraint approach. While the equatorial western Pacific projected rainfall increase is robust in our experiments and CMIP5, correcting the projected CMIP5 SST changes yields a considerably larger reduction (~ 25%) than in CMIP5 simulations (~ + 3%) in the southwestern Pacific. Indeed, correcting the projected CMIP5 warming pattern yields stronger projected SST gradients, and more humidity convergence reduction under the SPCZ. Finally, our bias-corrected set of experiments yields an increase in equatorial rainfall and SPCZ variability in the future, but does not support the future increase in the frequency of zonal SPCZ events simulated by CMIP5 models. This study hence suggests that atmospheric downscaling studies should not only correct CMIP5 present-day SST biases but also projected SST changes to improve the reliability of their projections. Additional simulations with different physical parameterizations yield robust results.

Keywords

Regional climate models South Pacific Convergence Zone Precipitation Sea Surface Temperature 

Notes

References

  1. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res.  https://doi.org/10.1029/2005JD006290 CrossRefGoogle Scholar
  2. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018CrossRefGoogle Scholar
  3. Bracegirdle TJ, Stephenson DB (2013) On the robustness of emergent constraints used in multimodel climate change projections of arctic warming. J Clim 26:669–678CrossRefGoogle Scholar
  4. Bretherton CS, Park S (2009) A new moist turbulence parameterization in the community atmosphere model. J Clim 22:3422–3448CrossRefGoogle Scholar
  5. Brown JR, Power SB, Delage FP, Colman RA, Moise AF, Murphy BF (2011) Evaluation of the South Pacific Convergence Zone in IPCC AR4 climate model simulations of the twentieth century. J Clim 24:1565–1582CrossRefGoogle Scholar
  6. Brown JR, Moise AF, Delage FP (2012) Changes in the South Pacific Convergence Zone in IPCC AR4 future climate projections. Clim Dyn 39:1–19CrossRefGoogle Scholar
  7. Brown JR, Moise AF, Colman RA (2013) The South Pacific Convergence Zone in CMIP5 simulations of historical and future climate. Clim Dyn 41:2179–2197CrossRefGoogle Scholar
  8. Brown JN, Matear RJ, Brown JR, Katzfey J (2015) Precipitation projections in the tropical Pacific are sensitive to different types of SST bias adjustment: precipitation and SST bias adjustment. Geophys Res Lett 42:10,856–10,866Google Scholar
  9. Cai W, Lengaigne M, Borlace S, Collins M, Cowan T, McPhaden MJ, Timmermann A, Power S, Brown J, Menkes C et al (2012) More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature 488:365–369CrossRefGoogle Scholar
  10. Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden MJ, Wu L et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4:111–116CrossRefGoogle Scholar
  11. Cai W, Santoso A, Wang G, Yeh S-W, An S-I, Cobb KM, Collins M, Guilyardi E, Jin F-F, Kug J-S et al (2015) ENSO and greenhouse warming. Nat Clim Change 5:849–859CrossRefGoogle Scholar
  12. Chen F, Dudhia J (2001) Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585CrossRefGoogle Scholar
  13. Chung CTY, Power SB (2016) Modelled impact of global warming on ENSO-driven precipitation changes in the tropical Pacific. Clim Dyn 47:1303–1323CrossRefGoogle Scholar
  14. Chung CTY, Power SB, Arblaster JM, Rashid HA, Roff GL (2014) Nonlinear precipitation response to El Niño and global warming in the Indo-Pacific. Clim Dyn 42:1837–1856CrossRefGoogle Scholar
  15. Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb B, Bitz C, Lin S-J et al (2004) Description of the NCAR Community Atmosphere Model (CAM 3.0), p 226Google Scholar
  16. Collins M, An S-I, Cai W, Ganachaud A, Guilyardi E, Jin F-F, Jochum M, Lengaigne M, Power S, Timmermann A et al (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3:391–397CrossRefGoogle Scholar
  17. Deser C, Phillips AS, Alexander MA (2010) Twentieth century tropical sea surface temperature trends revisited: twentieth century tropical SST trends. Geophys Res Lett.  https://doi.org/10.1029/2010GL043321 CrossRefGoogle Scholar
  18. Evans JP, Bormann K, Katzfey J, Dean S, Arritt R (2016) Regional climate model projections of the South Pacific Convergence Zone. Clim Dyn 47:817–829CrossRefGoogle Scholar
  19. Folland CK (2002) Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. Geophys Res Lett 29(13):211–214.  https://doi.org/10.1029/2001GL014201 CrossRefGoogle Scholar
  20. Gouriou Y, Delcroix T (2002) Seasonal and ENSO variations of sea surface salinity and temperature in the South Pacific Convergence Zone during 1976–2000: sea surface salinity and temperature in the SPCZ. J Geophys Res Oceans 107:SRF 12-1-SRF 12-14CrossRefGoogle Scholar
  21. Grose MR, Brown JN, Narsey S, Brown JR, Murphy BF, Langlais C, Gupta AS, Moise AF, Irving DB (2014) Assessment of the CMIP5 global climate model simulations of the western tropical Pacific climate system and comparison to CMIP3: assesment of CMIP5 climate models for the western tropical pacific. Int J Climatol 34:3382–3399CrossRefGoogle Scholar
  22. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699CrossRefGoogle Scholar
  23. Herger N, Abramowitz G, Knutti R, Angélil O, Lehmann K, Sanderson BM (2018) Selecting a climate model subset to optimise key ensemble properties. Earth Syst Dyn 9(1):135–151.  https://doi.org/10.5194/esd-9-135-2018 CrossRefGoogle Scholar
  24. Hong S-Y, Dudhia J, Chen S-H (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120CrossRefGoogle Scholar
  25. Huang P, Ying J (2015) A multimodel ensemble pattern regression method to correct the tropical pacific sst change patterns under global warming. J Clim 28:4706–4723CrossRefGoogle Scholar
  26. Huang P, Xie S-P, Hu K, Huang G, Huang R (2013) Patterns of the seasonal response of tropical rainfall to global warming. Nat Geosci 6:357–361CrossRefGoogle Scholar
  27. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res.  https://doi.org/10.1029/2008JD009944 CrossRefGoogle Scholar
  28. Irving D, Perkins S, Brown J, Sen Gupta A, Moise A, Murphy B, Muir L, Colman R, Power S, Delage F et al (2011) Evaluating global climate models for the Pacific island region. Clim Res 49:169–187CrossRefGoogle Scholar
  29. Janjić ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945CrossRefGoogle Scholar
  30. Jiménez PA, Dudhia J, González-Rouco JF, Navarro J, Montávez JP, García-Bustamante E (2012) A revised scheme for the WRF surface layer formulation. Mon Weather Rev 140(3):898–918.  https://doi.org/10.1175/MWR-D-11-00056.1 CrossRefGoogle Scholar
  31. Jourdain NC, Marchesiello P, Menkes CE, Lefèvre J, Vincent EM, Lengaigne M, Chauvin F (2011) Mesoscale simulation of tropical cyclones in the south Pacific: climatology and interannual variability. J Clim 24:3–25CrossRefGoogle Scholar
  32. Juillet-Leclerc A, Thiria S, Naveau P, Delcroix T, Le Bec N, Blamart D, Corrège T (2006) SPCZ migration and ENSO events during the 20th century as revealed by climate proxies from a Fiji coral. Geophys Res Lett.  https://doi.org/10.1029/2006GL025950 CrossRefGoogle Scholar
  33. Jullien S, Marchesiello P, Menkes CE, Lefvre J, Jourdain NC, Samson G, Lengaigne M (2014) Ocean feedback to tropical cyclones: climatology and processes. Clim Dyn 43:2831–2854CrossRefGoogle Scholar
  34. Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643CrossRefGoogle Scholar
  35. Kidwell A, Lee T, Jo Y-H, Yan X-H (2016) Characterization of the variability of the south pacific convergence zone using satellite and reanalysis wind products. J Clim 29:1717–1732CrossRefGoogle Scholar
  36. Kiladis GN, von Storch H, Loon H (1989) Origin of the South Pacific convergence zone. J Clim 2:1185–1195CrossRefGoogle Scholar
  37. Kirono DGC, Kent DM, Hennessy KJ, Mpelasoka F (2011) Characteristics of Australian droughts under enhanced greenhouse conditions: results from 14 global climate models. J Arid Environ 75:566–575CrossRefGoogle Scholar
  38. Knutson TR, Sirutis JJ, Garner ST, Vecchi GA, Held IM (2008) Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat Geosci 1:359–364CrossRefGoogle Scholar
  39. Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23(10):2739–2758.  https://doi.org/10.1175/2009JCLI3361.1 CrossRefGoogle Scholar
  40. Knutti R, Sedláček J, Sanderson BM, Lorenz R, Fischer EM, Eyring V (2017) A climate model projection weighting scheme accounting for performance and interdependence. Geophys Res Lett 44(4):1909–1918.  https://doi.org/10.1002/2016GL072012 CrossRefGoogle Scholar
  41. Lefèvre J, Menkes C, Bani P, Marchesiello P, Curci G, Grell GA, Frouin R (2016) Distribution of sulfur aerosol precursors in the SPCZ released by continuous volcanic degassing at Ambrym, Vanuatu. J Volcanol Geotherm Res 322:76–104CrossRefGoogle Scholar
  42. Li G, Xie S-P (2014) Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial pacific cold tongue and double ITCZ problems*. J Clim 27:1765–1780CrossRefGoogle Scholar
  43. Li G, Du Y, Xu H, Ren B (2015) An intermodel approach to identify the source of excessive equatorial Pacific cold tongue in CMIP5 models and uncertainty in observational datasets. J Clim 28:7630–7640CrossRefGoogle Scholar
  44. Li G, Xie S-P, Du Y, Luo Y (2016) Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: the warming pattern in CMIP5 multi-model ensemble. Clim Dyn 47:3817–3831CrossRefGoogle Scholar
  45. Lin Y-L, Farley RD, Orville HD (1983) Bulk Parameterization of the Snow Field in a Cloud Model. J Clim Appl Meteorol 22:1065–1092CrossRefGoogle Scholar
  46. Lintner BR, Langenbrunner B, Neelin JD, Anderson BT, Niznik MJ, Li G, Xie S-P (2016) Characterizing CMIP5 model spread in simulated rainfall in the Pacific Intertropical Convergence and South Pacific Convergence Zones. J Geophys Res Atmos 121(19):11590–11607.  https://doi.org/10.1002/2016JD025284 CrossRefGoogle Scholar
  47. Matsueda M, Palmer TN (2011) Accuracy of climate change predictions using high resolution simulations as surrogates of truth: accuracy of climate change predictions. Geophys Res Lett.  https://doi.org/10.1029/2010GL046618 CrossRefGoogle Scholar
  48. Matthews AJ (2012) A multiscale framework for the origin and variability of the South Pacific Convergence Zone. Q J R Meteorol Soc 138(666):1165–1178.  https://doi.org/10.1002/qj.1870 CrossRefGoogle Scholar
  49. McGree S, Whan K, Jones D, Alexander LV, Imielska A, Diamond H, Ene E, Finaulahi S, Inape K, Jacklick L et al (2014) An updated assessment of trends and variability in total and extreme rainfall in the western Pacific: trends and variability in extreme rainfall in the western pacific. Int J Climatol 34:2775–2791CrossRefGoogle Scholar
  50. Mechoso CR, Robertson AW, Barth N, Davey MK, Delecluse P, Gent PR, Ineson S, Kirtman B, Latif M, Treut HL et al (1995) The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon Weather Rev 123:2825–2838CrossRefGoogle Scholar
  51. Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, McAvaney B, Mitchell JFB (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  52. Meng Q, Latif M, Park W, Keenlyside NS, Semenov VA, Martin T (2012) Twentieth century Walker Circulation change: data analysis and model experiments. Clim Dyn 38:1757–1773CrossRefGoogle Scholar
  53. Murphy BF, Ye H, Delage F (2015) Impacts of variations in the strength and structure of El Niño events on Pacific rainfall in CMIP5 models. Clim Dyn 44:3171–3186CrossRefGoogle Scholar
  54. Nguyen KC, Katzfey JJ, McGregor JL (2012) Global 60 km simulations with CCAM: evaluation over the tropics. Clim Dyn 39:637–654CrossRefGoogle Scholar
  55. Niznik MJ, Lintner BR, Matthews AJ, Widlansky MJ (2015) The role of tropical–extratropical interaction and synoptic variability in maintaining the south pacific convergence zone in CMIP5 models. J Clim 28:3353–3374CrossRefGoogle Scholar
  56. Noh Y, Cheon WG, Hong SY, Raasch S (2003) Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound-Layer Meteorol 107:401–427CrossRefGoogle Scholar
  57. Park S, Bretherton CS (2009) The university of washington shallow convection and moist turbulence schemes and their impact on climate simulations with the community atmosphere model. J Clim 22(12):3449–3469.  https://doi.org/10.1175/2008JCLI2557.1 CrossRefGoogle Scholar
  58. Parvathi V, Suresh I, Lengaigne M, Izumo T, Vialard J (2017) Robust projected weakening of winter monsoon winds over the arabian sea under climate change. Geophys Res Lett 44:9833–9843CrossRefGoogle Scholar
  59. Perkins SE (2011) Biases and model agreement in projections of climate extremes over the tropical Pacific. Earth Interact 15:1–36CrossRefGoogle Scholar
  60. Power S, Delage F, Chung C, Kociuba G, Keay K (2013) Robust twenty-first-century projections of El Niño and related precipitation variability. Nature 502:541–545CrossRefGoogle Scholar
  61. Santoso A, Mcphaden MJ, Cai W (2017) The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño: ENSO extremes. Rev Geophys 55(4):1079–1129.  https://doi.org/10.1002/2017RG000560 CrossRefGoogle Scholar
  62. Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485CrossRefGoogle Scholar
  63. Solomon A, Newman M (2012) Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nat Clim Change 2:691–699CrossRefGoogle Scholar
  64. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  65. Timmermann A, An S-I, Kug J-S, Jin F-F, Cai W, Capotondi A, Cobb K, Lengaigne M, McPhaden MJ, Stuecker MF, Stein K, Wittenberg AT, Yun K-S, Bayr T, Chen H-C, Chikamoto Y, Dewitte B, Dommenget D, Grothe P, Guilyardi E, Ham Y-G, Hayashi M, Ineson S, Kang D, Kim S, Kim W, Lee J-Y, Li T, Luo J-J, McGregor S, Planton Y, Power S, Rashid H, Ren H-L, Santoso A, Takahashi K, Todd A, Wang G, Wang G, Xie R, Yang W-H, Yeh S-W, Yoon J, Zeller E, Zhang X (2018) El Niño–Southern Oscillation complexity. Nature 559(7715):535–545.  https://doi.org/10.1038/s41586-018-0252-6 CrossRefGoogle Scholar
  66. Tokinaga H, Xie S-P, Deser C, Kosaka Y, Okumura YM (2012) Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 491:439–443CrossRefGoogle Scholar
  67. Trenberth KE (1976) Spatial and temporal variations of the Southern Oscillation. Q J R Meteorol Soc 102:639–653CrossRefGoogle Scholar
  68. van Vuuren DP et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31.  https://doi.org/10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  69. van der Wiel K, Matthews AJ, Stevens DP, Joshi MM (2015) A dynamical framework for the origin of the diagonal South Pacific and South Atlantic Convergence Zones. Q J R Meteorol Soc 141(691):1997–2010.  https://doi.org/10.1002/qj.2508 CrossRefGoogle Scholar
  70. van der Wiel K, Matthews AJ, Joshi MM, Stevens DP (2016a) Why the South Pacific Convergence Zone is diagonal. Clim Dyn 46(5–6):1683–1698.  https://doi.org/10.1007/s00382-015-2668-0 CrossRefGoogle Scholar
  71. van der Wiel K, Matthews AJ, Joshi MM, Stevens DP (2016b) The influence of diabetic heating in the South Pacific Convergence Zone on Rossby wave propagation and the mean flow: the Influence of Diabetic Heating in the SPCZ on Rossby Wave Propagation and the Mean Flow. Q J R Meteorol Soc 142(695):901–910.  https://doi.org/10.1002/qj.2692 CrossRefGoogle Scholar
  72. Vecchi GA, Clement A, Soden BJ (2008) Examining the tropical Pacific’s response to global warming. Eos Trans Am Geophys Union 89:81–83CrossRefGoogle Scholar
  73. Vincent DG (1994) The South Pacific convergence zone (SPCZ): a review. Mon Weather Rev 122:1949–1970CrossRefGoogle Scholar
  74. Vincent EM, Lengaigne M, Menkes CE, Jourdain NC, Marchesiello P, Madec G (2011) Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis. Clim Dyn 36:1881–1896CrossRefGoogle Scholar
  75. Walsh K (2015) Fine resolution simulations of the effect of climate change on tropical cyclones in the South Pacific. Clim Dyn 45:2619–2631CrossRefGoogle Scholar
  76. Watanabe M, Kamae Y, Kimoto M (2014) Robust increase of the equatorial Pacific rainfall and its variability in a warmed climate: increasing pacific rainfall variability. Geophys Res Lett 41:3227–3232CrossRefGoogle Scholar
  77. Widlansky MJ, Webster PJ, Hoyos CD (2011) On the location and orientation of the South Pacific Convergence Zone. Clim Dyn 36(3–4):561–578.  https://doi.org/10.1007/s00382-010-0871-6 CrossRefGoogle Scholar
  78. Widlansky MJ, Timmermann A, Stein K, McGregor S, Schneider N, England MH, Lengaigne M, Cai W (2013) Changes in South Pacific rainfall bands in a warming climate. Nat Clim Change 3:417–423CrossRefGoogle Scholar
  79. Xie S-P, Deser C, Vecchi GA, Collins M, Delworth TL, Hall A, Hawkins E, Johnson NC, Cassou C, Giannini A et al (2015) Towards predictive understanding of regional climate change. Nat Clim Change 5:921–930CrossRefGoogle Scholar
  80. Xu K-M, Randall DA (1996) A semiempirical cloudiness parameterization for use in climate models. J Atmos Sci 53(21):3084–3102.  https://doi.org/10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2 CrossRefGoogle Scholar
  81. Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmos Ocean 33:407–446CrossRefGoogle Scholar
  82. Zheng Y, Lin J-L, Shinoda T (2012) The equatorial Pacific cold tongue simulated by IPCC AR4 coupled GCMs: upper ocean heat budget and feedback analysis: the pacific cold tongue bias analysis. J Geophys Res Oceans.  https://doi.org/10.1029/2011JC007746 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IRD (Institut de Recherche pour le Développement)-Sorbonne Universités (UPMC, Université Paris 06)-CNRS-MNHN-IPSL, LOCEAN Laboratory, IRD Nouméa BP A5NouméaFrance
  2. 2.Climate Change Research Centre and ARC Centre of Excellence for Climate Extremes, School of BEESUniversity of New South WalesSydneyAustralia
  3. 3.LOCEAN-IPSL, Sorbonne Universités, UPMC, Université Paris 06, CNRS-IRD-MNHNParisFrance
  4. 4.University of Grenoble Alpes/CNRS/IRD/G-INP, IGEGrenobleFrance
  5. 5.Ifremer, University of Brest, CNRS, IRD, Laboratoire d’Océanographie Physique et Spatiale (LOPS), IUEMPlouzanéFrance
  6. 6.Météo FranceNouméaFrance

Personalised recommendations