Advertisement

Temperature variability and soil–atmosphere interaction in South America simulated by two regional climate models

  • Claudio G. MenéndezEmail author
  • Julián Giles
  • Romina Ruscica
  • Pablo Zaninelli
  • Tanea Coronato
  • Magdalena Falco
  • Anna Sörensson
  • Lluís Fita
  • Andrea Carril
  • Laurent Li
Article

Abstract

Interannual variability of surface air temperature over South America is investigated and, based on previous studies, thought to be partly the consequence of soil–atmosphere interaction. Annual and monthly averages of surface air temperature, evapotranspiration, heat fluxes, surface radiation and cloud cover, simulated by two regional climate models, RCA4 and LMDZ, were analyzed. To fully reveal the role of soil as a driver of temperature variability, simulations were performed with and without soil moisture-atmosphere coupling (Control and Uncoupled). Zones of large variance in air temperature and strong soil moisture-atmosphere coupling are found in parts of La Plata Basin and in eastern Brazil. The two models show different behaviors in terms of coupling magnitude and its geographical distribution, being the coupling strength higher in RCA4 and weaker in LMDZ. RCA4 also shows greater amplitude of the annual cycle of the monthly surface air temperature compared to LMDZ. In both regions and for both models, the Uncoupled experiment tends to be colder and exhibits smaller amplitude of the interannual variability and larger evaporative fraction than the Control does. It is evidenced that variability of the land surface affects, and is affected by, variability of the surface energy balance and that interannual temperature variability is partly driven by land–atmosphere interaction.

Keywords

Interannual climate variability Surface air temperature Regional climate modeling South America Land–atmosphere interaction 

Notes

Acknowledgements

The authors are grateful to Dr. Roberto Suárez-Moreno and two anonymous reviewers for their perceptive comments that greatly contributed to the improvement of the original manuscript. This research was supported by projects LEFE (AO2015-876370, France), PICT 2014 − 0887 (ANPCyT, Argentina), PIP 112-201101-00932 (CONICET, Argentina) and PICT2015-3097 (ANPCyT, Argentina).

References

  1. Andreoli R, Kayano M (2005) ENSO-related rainfall anomalies in South America and associated circulation features during warm and cold pacific decadal oscillation regimes. Int J Climatol 25:2017–2030CrossRefGoogle Scholar
  2. Barreiro M, Díaz N (2011) Land–atmosphere coupling in El Niño influence over South America. Atmos Sci Lett 12:351–355.  https://doi.org/10.1002/asl.348 CrossRefGoogle Scholar
  3. Bechtold P, Bazile E, Guichard F, Mascart P, Richard E (2001) A mass-flux convection scheme for regional and global models. Q J R Meteorol Soc 127:869–886CrossRefGoogle Scholar
  4. Bedoya-Soto JM, Poveda G, Sauchyn D (2018) New insights on land surface-atmosphere feedbacks over tropical South America at interannual timescales. Water 10:1095.  https://doi.org/10.3390/w10081095 CrossRefGoogle Scholar
  5. Berg A, Lintner BR, Findell K, Seneviratne SI, van den Hurk B, Ducharne A, Chéruy F, Hagemann S, Lawrence DM, Malyshev S, Meier A, Gentine P (2015) Interannual coupling between summertime surface temperature and precipitation over land: processes and implications for climate change. J Clim 28:1308–1328.  https://doi.org/10.1175/JCLI-D-14-00324.1 CrossRefGoogle Scholar
  6. Carril AF, Menéndez CG, Remedio ARC et al (2012) Performance of a multi-RCMensemble for South Eastern South America. Clim Dyn 39:2747–2768.  https://doi.org/10.1007/s00382-012-1573-z CrossRefGoogle Scholar
  7. Cazes-Boezio G, Robertson AW, Mechoso CR (2003) Seasonal dependence of ENSO teleconnections over South America and relationships with precipitation in Uruguay. J Clim 16:1159–1176CrossRefGoogle Scholar
  8. Chen W, Jiang Z, Li L, Yiou P (2011) Simulation of regional climate change under the IPCC A2 scenario in southeast China. Clim Dyn 36:491–507CrossRefGoogle Scholar
  9. da Rocha RP, Cuadra SV, Reboita MS, Kruger LF, Ambrizzi T, Krusche N (2012) Effects of RegCM3 parameterizations on simulated rainy season over South America. Clim Res 52:253–265CrossRefGoogle Scholar
  10. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de RosnayP, Tavolato, Thépaut C, Vitart J-N F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597.  https://doi.org/10.1002/qj.828 CrossRefGoogle Scholar
  11. Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2329CrossRefGoogle Scholar
  12. Emanuel KA (1993) A cumulus representation based on the episodic mixing model: The importance of mixing and microphysics in predicting humidity. In: Emanuel KA, Raymond DJ (eds) The representation of cumulus convection in numerical models. Meteorological Monographs. American Meteorological Society, Boston, MA, pp 185–192.  https://doi.org/10.1007/978-1-935704-13-3_19 CrossRefGoogle Scholar
  13. Falco M, Carril AF, Menéndez CG, Zaninelli P, Li LZX (2018) Assessment of CORDEX simulations over South America: added value on seasonal climatology and resolution considerations. Clim Dyn.  https://doi.org/10.1007/s00382-018-4412-z Google Scholar
  14. Field CB, Barros VR, Dokken DJ, Mach KJ Mastrandrea MD, et al (2014) Climate change 2014: impacts, adaptation, and vulnerability : Working Group II contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  15. Garreaud RD, Vuille M, Compagnucci R, Marengo J (2008) Present-day South American climate. Paleogeogr Palaeoclimato lPalaeoecol.  https://doi.org/10.1016/j.palaeo.2007.10.032 Google Scholar
  16. Guillevic P, Koster RD, Suarez MJ, Bounoua L, Collatz GJ, Los SO, Mahanama SP (2002) Influence of the interannual variability of vegetation on the surface energy balance—a global sensitivity study. J Hydrometeor 3:617–629.  https://doi.org/10.1175/1525-7541(2002)003%3C0617:IOTIVO%3E2.0.CO;2 CrossRefGoogle Scholar
  17. Guo Z, Dirmeyer PA (2013) Interannual variability of land–atmosphere coupling strength. J Hydrometeor 14:1636–1646.  https://doi.org/10.1175/JHM-D-12-0171.1 CrossRefGoogle Scholar
  18. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updatedhigh-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642.  https://doi.org/10.1002/joc.3711 CrossRefGoogle Scholar
  19. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne J-L, Fairhead L, Filiberti M-A, Friedlingstein P, Grandpeix J-X, Krinner G, LeVan P, Li Z-X, Lott F (2006) The LMDZ4 generalcirculation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813CrossRefGoogle Scholar
  20. Jones C, Willen U, Ullerstig A, Hansson U (2004) The Rossby Centre regional atmospheric climate model part I: model climatology and performance for the present climate over Europe. Ambio 33(4–5):199–210CrossRefGoogle Scholar
  21. Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen JQ, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu QZ, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467(7318):951–954.  https://doi.org/10.1038/Nature09396 CrossRefGoogle Scholar
  22. Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802CrossRefGoogle Scholar
  23. Kain JS, Fritsch JM (1993) Convective parameterizations for Mesoscale Models: the Kain–Fritsch scheme. In: Emanuel KA, Raymond DJ (eds) The representation of cumulus convection in numerical models, vol 46. AMS Monograph, pp 246Google Scholar
  24. Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL(2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643.  https://doi.org/10.1175/BAMS-83-11-1631 CrossRefGoogle Scholar
  25. Koster RD et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140CrossRefGoogle Scholar
  26. Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Colin Prentice I (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cycles  https://doi.org/10.1029/2003GB002199 Google Scholar
  27. Krzywinski M, Altman N (2014) Visualizing samples with box plots. Nat Methods 11:119–120.  https://doi.org/10.1038/nmeth.2813 CrossRefGoogle Scholar
  28. Kupiainen M, Jansson C, Samuelsson P, Jones C, Willén U, Hansson U, Ullerstig A, Wang S, Döscher R (2014) Rossby Centre regional atmospheric model, RCA4. Rossby Center News Letter, Rossby Centre regional atmospheric model, RCA4Google Scholar
  29. Le Treut H, Li ZX (1991) Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties. Clim Dyn 5:175–187CrossRefGoogle Scholar
  30. Lenderink G, van Ulden A, van den Hurk B et al (2007) Summertime inter-annual temperature variability in an ensemble of regional model simulations: analysis of the surface energy budget. Clim Change 81(Suppl 1):233.  https://doi.org/10.1007/s10584-006-9229-9 CrossRefGoogle Scholar
  31. Li ZX (1999) Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J Clim 12:986–1001CrossRefGoogle Scholar
  32. Llopart M, da Rocha RP, Reboita M et al (2017) Sensitivity of simulated South America climate to the land surface schemes in RegCM4. Clim Dyn 49:3975.  https://doi.org/10.1007/s00382-017-3557-5 CrossRefGoogle Scholar
  33. Menéndez CG, Zaninelli PG, Carril AF, Sánchez E (2016) Hydrological cycle, temperature, and land surface–atmosphere interaction in the La Plata Basin during summer: response to climate change. Clim Res 68:231–241.  https://doi.org/10.3354/cr01373 CrossRefGoogle Scholar
  34. Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479CrossRefGoogle Scholar
  35. Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85:369–432CrossRefGoogle Scholar
  36. Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New YorkCrossRefGoogle Scholar
  37. Poveda G, Waylen P, Pulwarty R (2006) Annual and inter-annual variability of present climate in northern South America and southern Mesoamerica. Paleogeogr Palaeoclimato lPalaeoecol 234(1):3–27CrossRefGoogle Scholar
  38. Räisänen P, Rummukainen M, Räisänen J (2000) Modification of the HIRLAM radiation scheme for use in the Rossby Centre regional atmospheric climate model. Reports Meteorology and Climatology 49, Department of Meteorology, University of Helsinki, FinlandGoogle Scholar
  39. Rasch PJ, Kristjansson JE (1998) A comparison of the CCM3 Model climate using diagnosed and predicted condensate parameterizations. J Clim 11:1587–1614CrossRefGoogle Scholar
  40. Ruscica RC, Sörensson AA, Menéndez CG (2015) Pathways between soil moisture and precipitation in southeastern South America. Atmos Sci Lett 16:267–272.  https://doi.org/10.1002/asl2.552 CrossRefGoogle Scholar
  41. Ruscica RC, Menéndez CG, Sörensson AA (2016) Land surface-atmosphere interaction in future South American climate using a multi-model ensemble. Atmos Sci Lett 17:141–147.  https://doi.org/10.1002/asl.635 CrossRefGoogle Scholar
  42. Samuelsson P, Jones CG, Willén U, Ullerstig A et al (2011) The rossby centre regional climate model RCA3: model description and performance. Tellus 63A:4–23CrossRefGoogle Scholar
  43. Samuelsson P, Gollvik S, Jansson C, Kupiainen M, Kourzeneva E, van de Berg WJ (2014) The surface processes of the Rossby Centre regional atmospheric climate model (RCA4). Report in Meteorology 157, SMHI, SE-601 76 Norrköping, SwedenGoogle Scholar
  44. Sass BH, Rontu L, Savijärvi H, Räisänen P (1994) HIRLAM-2 Radiationscheme: Documentation and tests. Hirlam technical report No 16, SMHI, SE-601 76 Norrköping, Sweden, pp 43Google Scholar
  45. Savijärvi H (1990) A fast radiation scheme for mesoscale model and short-range forecast models. J Appl Met 29:437–447CrossRefGoogle Scholar
  46. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209CrossRefGoogle Scholar
  47. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate:a review. Earth-Sci Rev: 99(3): 125–161.  https://doi.org/10.1016/j.earscirev.2010.02.004 CrossRefGoogle Scholar
  48. Sörensson AA, Menéndez CG (2011) Summer soil-precipitation coupling in South America. Tellus 63A:56–68CrossRefGoogle Scholar
  49. Spennemann PC, Saulo AC (2015) An estimation of the land-atmosphere coupling strength in South America using the Global Land Data assimilation system. Int J Climatol 35:4151–4166.  https://doi.org/10.1002/joc.4274 CrossRefGoogle Scholar
  50. Spennemann PC, Salvia M, Ruscica RC, Sörensson AA, Grings F, Karszenbaum H (2018) Land-atmosphere interaction patterns in southeastern South America using satellite products and climate models. Int J Appl Earth Obs Geoinf 64:96–103.  https://doi.org/10.1016/j.jag.2017.08.016 CrossRefGoogle Scholar
  51. Thomasz OE, Vilker AS, Rondinone G (2019) The economic cost of extreme and severe droughts in soybean production in Argentina. Contaduría y Administración 64(1):1–24.  https://doi.org/10.22201/fca.24488410e.2018.1422 Google Scholar
  52. Van Leer B (1977) Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J Comput Phys 23:276–299CrossRefGoogle Scholar
  53. Wing GYK, Sushama L, Diro GT (2016) The intraannual variability of land atmosphere coupling over North America in the Canadian regional climate model (CRCM5). J Geophys Res 121:13,859–13,885.  https://doi.org/10.1002/2016JD025423 CrossRefGoogle Scholar
  54. Zaninelli PG, Menéndez CG, Falco M, López-Franca N, Carril AF (2018) Future hydroclimatological changes in South America based on an ensemble of regional climate models. Clim Dyn.  https://doi.org/10.1007/s00382-018-4225-0 Google Scholar
  55. Zou LW, Zhou TJ, Li L, Zhang J (2010) East China Summer rainfall variability of 1958–2000: dynamical downscaling with a variable-resolution AGCM. J Clim 23:6394–6408CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Claudio G. Menéndez
    • 1
    • 2
    • 3
    Email author
  • Julián Giles
    • 1
    • 2
    • 3
  • Romina Ruscica
    • 1
    • 2
    • 3
  • Pablo Zaninelli
    • 1
    • 2
    • 3
    • 4
  • Tanea Coronato
    • 1
    • 2
    • 3
  • Magdalena Falco
    • 1
    • 2
    • 3
    • 5
  • Anna Sörensson
    • 1
    • 2
    • 3
  • Lluís Fita
    • 1
    • 2
    • 3
  • Andrea Carril
    • 1
    • 2
    • 3
  • Laurent Li
    • 5
  1. 1.Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Centro de Investigaciones del Mar y la Atmósfera (CIMA/CONICET-UBA)Buenos AiresArgentina
  3. 3.Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos (UMI3351-IFAECI/CNRS-CONICET-UBA)Buenos AiresArgentina
  4. 4.Facultad de Ciencias Astronómicas y GeofísicasUniversidad Nacional de La PlataBuenos AiresArgentina
  5. 5.Laboratoire de Météorologie DynamiqueCNRSParisFrance

Personalised recommendations