Advertisement

Dynamical impact of parameterized turbulent orographic form drag on the simulation of winter precipitation over the western Tibetan Plateau

  • Xu Zhou
  • Kun YangEmail author
  • Anton Beljaars
  • Huidong Li
  • Changgui Lin
  • Bo Huang
  • Yan Wang
Article

Abstract

Sub-grid orographic drag directly acts on wind and impacts the regional water cycle through control of atmospheric water vapor (AWV) transport. The effect of turbulent orographic form drag (TOFD) on wind and precipitation is investigated in this study using the WRF model for a winter month over the western Tibetan Plateau (TP), where solid precipitation supplies large amounts of water resources. The diurnal cycle of wind components and atmospheric circulation simulated with TOFD are consistent with observations and ERA-Interim data, whereas stronger westerlies exist in the simulation without the TOFD scheme. The latter results in more zonal AWV transport from the west and more precipitation over the western TP and surroundings. The implementation of the TOFD scheme leads to reduced biases, when evaluated with two observation-based precipitation products. It is therefore concluded that this scheme has a clear dynamical control on the regional atmospheric water recharge and thus the parameterization of the small-scale orographic drag in the model helps to improve the prediction of wintertime precipitation in the western TP region.

Keywords

Turbulent orographic form drag Wind Precipitation Tibetan Plateau WRF 

Notes

Acknowledgements

The simulations were performed at the HPCC super-computer at the Institute of Tibetan Plateau Research. The station data was provided by National Meteorological Information Center, China Meteorological Administration. The ERA-Interim reanalysis data was downloaded from https://www.ecmwf.int/en/forecasts/datasets. We are grateful to the China Meteorological Administration and ECMWF for offering the necessary data.

Funding

This work was funded by the National Key Research and Development Program of China (Grant no. 2018YFA0605400), the National Natural Science Foundation of China (Grant nos. 41705084, 91537210), the Key Frontier Project of Chinese Academy of Sciences (Grant no. QYZDY-SSW-DQC011-03), and the National Key Basic Research Program of China (Grant no. 2015CB953703).

Compliance with ethical standards

Conflict of interest

There is no conflict of interests for any author.

References

  1. Bao JW, Feng JM, Wang YL (2015) Dynamical downscaling simulation and future projection of precipitation over China. J Geophys Res-Atmos 120(16):8227–8243.  https://doi.org/10.1002/2015jd023275 CrossRefGoogle Scholar
  2. Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Schamm K, Schneider U, Ziese M (2013) A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present. Earth Syst Sci Data 5(1):71–99.  https://doi.org/10.5194/essd-5-71-2013 CrossRefGoogle Scholar
  3. Beljaars ACM, Brown AR, Wood N (2004) A new parametrization of turbulent orographic form drag. Q J R Meteor Soc 130(599):1327–1347.  https://doi.org/10.1256/qj.03.073 CrossRefGoogle Scholar
  4. Cescatti A et al (2012) Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote Sens Environ 121:323–334.  https://doi.org/10.1016/j.rse.2012.02.019 CrossRefGoogle Scholar
  5. Chen, F., and J. Dudhia (2001), Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part II: preliminary model validation. Mon Weather Rev 129(4):587–604.  https://doi.org/10.1175/1520-0493(2001)129%3C0587:Caalsh%3E2.0.Co;2.CrossRefGoogle Scholar
  6. Chen R, Liu J, Kang E, Yang Y, Han C, Liu Z, Song Y, Qing W, Zhu P (2015) Precipitation measurement intercomparison in the Qilian Mountains, north-eastern Tibetan Plateau. Cryosphere 9(5):1995–2008.  https://doi.org/10.5194/tc-9-1995-2015 CrossRefGoogle Scholar
  7. Choi HJ, Hong SY (2015) An updated subgrid orographic parameterization for global atmospheric forecast models. J Geophys Res-Atmos 120(24):12445–12457.  https://doi.org/10.1002/2015jd024230 CrossRefGoogle Scholar
  8. Choi HJ, Choi SJ, Koo MS, Kim JE, Kwon YC, Hong SY (2017) Effects of parameterized orographic drag on weather forecasting and simulated climatology over East Asia during boreal summer. J Geophys Res-Atmos 122(20):10669–10678.  https://doi.org/10.1002/2017jd026696 CrossRefGoogle Scholar
  9. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteor Soc 137(656):553–597.  https://doi.org/10.1002/qj.828 CrossRefGoogle Scholar
  10. Feng L, Zhang Y (2007) Impacts of the thermal effects of sub-grid orography on the heavy rainfall events along the Yangtze river valley in 1991. Adv Atmos Sci 24(5):881–892.  https://doi.org/10.1007/s00376-007-0881-4 CrossRefGoogle Scholar
  11. Feng L, Zhou TJ (2012) Water vapor transport for summer precipitation over the Tibetan Plateau: multidata set analysis. J Geophys Res-Atmos 117:D20.  https://doi.org/10.1029/2011jd017012 CrossRefGoogle Scholar
  12. Fiedler F, Panofsky H (1972) The geostrophic drag coefficient and the effective roughness length. Q J R Meteor Soc 98(415):213–220.  https://doi.org/10.1002/qj.49709841519 Google Scholar
  13. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou S, Collins W, Cox P, Driouech F (2013) Contribution of working group I to the Fifth assessment report of the intergovernmental panel on climate change. Clim Change 2013(5):741–866Google Scholar
  14. Gao YH, Xue YK, Peng W, Kang HS, Waliser D (2011) Assessment of dynamic downscaling of the extreme rainfall over East Asia using a regional climate model. Adv Atmos Sci 28(5):1077–1098.  https://doi.org/10.1007/s00376-010-0039-7 CrossRefGoogle Scholar
  15. Gao YH, Xu JW, Chen DL (2015) Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979–2011. J Clim 28(7):2823–2841.  https://doi.org/10.1175/Jcli-D-14-00300.1 CrossRefGoogle Scholar
  16. Giorgi F et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52(1):7–29.  https://doi.org/10.3354/cr01018 CrossRefGoogle Scholar
  17. Grant ALM, Mason PJ (1990) Observations of boundary-layer structure over complex terrain. Q J R Meteor Soc 116(491):159–186CrossRefGoogle Scholar
  18. Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121(3):764–787.  https://doi.org/10.1175/1520-0493(1993)121%3C0764:Peoaub%3E2.0.Co;2.CrossRefGoogle Scholar
  19. Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29:14.  https://doi.org/10.1029/2002gl015311 CrossRefGoogle Scholar
  20. Guo DL, Yu ET, Wang HJ (2016) Will the Tibetan Plateau warming depend on elevation in the future? J Geophys Res-Atmos 121(8):3969–3978.  https://doi.org/10.1002/2016jd024871 CrossRefGoogle Scholar
  21. Hall DK, Riggs GA (2007) Accuracy assessment of the MODIS snow products. Hydrol Process 21(12):1534–1547.  https://doi.org/10.1002/hyp.6715 CrossRefGoogle Scholar
  22. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341.  https://doi.org/10.1175/Mwr3199.1 CrossRefGoogle Scholar
  23. Ji ZM, Kang SC (2013) Double-nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios. J Atmos Sci 70(4):1278–1290.  https://doi.org/10.1175/Jas-D-12-0155.1 CrossRefGoogle Scholar
  24. Jimenez PA, Dudhia J (2012) Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J Appl Meteorol Clim 51(2):300–316.  https://doi.org/10.1175/Jamc-D-11-084.1 CrossRefGoogle Scholar
  25. Jimenez PA, Dudhia J (2013) On the ability of the WRF model to reproduce the surface wind direction over complex terrain. J Appl Meteorol Clim 52(7):1610–1617.  https://doi.org/10.1175/Jamc-D-12-0266.1 CrossRefGoogle Scholar
  26. Jin MS, Mullens TJ (2012) Land-biosphere-atmosphere interactions over the Tibetan Plateau from MODIS observations. Environ Res Lett 7:1.  https://doi.org/10.1088/1748-9326/7/1/014003 CrossRefGoogle Scholar
  27. Jung JH, Arakawa A (2016) Simulation of subgrid orographic precipitation with an embedded 2-D cloud-resolving model. J Adv Model Earth Sy 8(1):31–40.  https://doi.org/10.1002/2015ms000539 CrossRefGoogle Scholar
  28. Kuang XX, Jiao JJ (2016) Review on climate change on the Tibetan Plateau during the last half century. J Geophys Res-Atmos 121(8):3979–4007.  https://doi.org/10.1002/2015jd024728 CrossRefGoogle Scholar
  29. Lee J, Shin HH, Hong SY, Jimenez PA, Dudhia J, Hong J (2015) Impacts of subgrid-scale orography parameterization on simulated surface layer wind and monsoonal precipitation in the high-resolution WRF model. J Geophys Res-Atmos 120(2):644–653.  https://doi.org/10.1002/2014jd022747 CrossRefGoogle Scholar
  30. Li HD, Wang AZ, Guan DX, Jin CJ, Wu JB, Yuan FH, Shi TT (2016), Empirical model development for ground snow sublimation beneath a temperate mixed forest in Changbai mountain. J Hydrol Eng 21:11.  https://doi.org/10.1061/(Asce)He.1943-5584.0001415 Google Scholar
  31. Li HD, Wolter M, Wang X, Sodoudi S (2018) Impact of land cover data on the simulation of urban heat island for Berlin using WRF coupled with bulk approach of Noah-LSM. Theor Appl Climatol 134:67–81.  https://doi.org/10.1007/s00704-017-2253-z CrossRefGoogle Scholar
  32. Li L, Gochis DJ, Sobolowski S, Mesquita MDS (2017b) Evaluating the present annual water budget of a Himalayan headwater river basin using a high-resolution atmosphere-hydrology model. J Geophys Res-Atmos 122(9):4786–4807.  https://doi.org/10.1002/2016jd026279 CrossRefGoogle Scholar
  33. Liang YS, Wang LN, Zhang GJ, Wu QZ (2017) Sensitivity test of parameterizations of subgrid-scale orographic form drag in the NCAR CESM1. Clim Dyn 48(9–10):3365–3379.  https://doi.org/10.1007/s00382-016-3272-7 CrossRefGoogle Scholar
  34. Lin YL, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol 22(6):1065–1092.  https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2 CrossRefGoogle Scholar
  35. Lin CG, Chen DL, Yang K, Ou TH (2018) Impact of model resolution on simulating the water vapor transport through the central Himalayas: implication for models’ wet bias over the Tibetan Plateau. Clim Dyn.  https://doi.org/10.1007/s00382-018-4074-x Google Scholar
  36. Lindvall J, Svensson G, Hannay C (2013) Evaluation of near-surface parameters in the two versions of the atmospheric model in CESM1 using flux station observations. J Clim 26(1):26–44.  https://doi.org/10.1175/Jcli-D-12-00020.1 CrossRefGoogle Scholar
  37. Liu YM, Wu GX, Hong JL, Dong BW, Duan AM, Bao Q, Zhou LJ (2012) Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change. Clim Dyn 39(5):1183–1195.  https://doi.org/10.1007/s00382-012-1335-y CrossRefGoogle Scholar
  38. Lorente-Plazas R, Jimenez PA, Dudhia J, Montavez JP (2016) Evaluating and improving the impact of the atmospheric stability and orography on surface winds in the WRF model. Mon Weather Rev 144(7):2685–2693.  https://doi.org/10.1175/Mwr-D-15-0449.1 CrossRefGoogle Scholar
  39. Ma JH, Wang HJ, Fan K (2015) Dynamic downscaling of summer precipitation prediction over China in 1998 using WRF and CCSM4. Adv Atmos Sci 32(5):577–584.  https://doi.org/10.1007/s00376-014-4143-y CrossRefGoogle Scholar
  40. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res-Atmos 102(D14):16663–16682.  https://doi.org/10.1029/97jd00237 CrossRefGoogle Scholar
  41. Mueller B, Seneviratne SI (2014) Systematic land climate and evapotranspiration biases in CMIP5 simulations. Geophys Res Lett 41(1):128–134.  https://doi.org/10.1002/2013gl058055 CrossRefGoogle Scholar
  42. Neale RB et al (2012) Description of the NCAR community atmosphere model (CAM 5.0), NCAR technical note, pp 106–107Google Scholar
  43. Norris J, Carvalho LMV, Jones C, Cannon F (2015) WRF simulations of two extreme snowfall events associated with contrasting extratropical cyclones over the western and central Himalaya. J Geophys Res-Atmos 120(8):3114–3138.  https://doi.org/10.1002/2014jd022592 CrossRefGoogle Scholar
  44. Pu ZX, Xu L, Salomonson VV (2007), MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophys Res Lett 34:6.  https://doi.org/10.1029/2006gl029262 Google Scholar
  45. Qin J, Yang K, Liang SL, Zhang H, Ma YM, Guo XF, Chen ZQ (2011) Evaluation of surface albedo from GEWEX-SRB and ISCCP-FD data against validated MODIS product over the Tibetan Plateau. J Geophys Res-Atmos 116:D24.  https://doi.org/10.1029/2011jd015823 Google Scholar
  46. Salomonson VV, Appel I (2004) Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens Environ 89(3):351–360.  https://doi.org/10.1016/j.rse.2003.10.016 CrossRefGoogle Scholar
  47. Su FG, Duan XL, Chen DL, Hao ZC, Cuo L (2013) Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim 26(10):3187–3208.  https://doi.org/10.1175/Jcli-D-12-00321.1 CrossRefGoogle Scholar
  48. Wang AH, Zeng XB (2012) Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J Geophys Res-Atmos 117:D5.  https://doi.org/10.1029/2011jd016553 Google Scholar
  49. Wang KC, Liang S, Schaaf CL, Strahler AH (2010) Evaluation of moderate resolution imaging spectroradiometer land surface visible and shortwave albedo products at FLUXNET sites. J Geophys Res-Atmos 115:D17.  https://doi.org/10.1029/2009jd013101 Google Scholar
  50. Wang AM, Duan MS, Li, He B (2016) Influences of thermal forcing over the slope/platform of the Tibetan Plateau on Asian summer monsoon: numerical studies with the WRF model. Chin J Geophys 59(9):3175–3187.  https://doi.org/10.6038/cjg20160904 Google Scholar
  51. Wilson JD (2002) Representing drag on unresolved terrain as a distributed momentum sink. J Atmos Sci 59(9):1629–1637.  https://doi.org/10.1175/1520-0469(2002)059%3C1629:Rdouta%3E2.0.Co;2 CrossRefGoogle Scholar
  52. Wood N, Mason P (1993) The pressure force induced by neutral, turbulent-flow over hills. Q J R Meteor Soc 119(514):1233–1267.  https://doi.org/10.1002/qj.49711951402 CrossRefGoogle Scholar
  53. Wood N, Brown AR, Hewer FE (2001) Parametrizing the effects of orography on the boundary layer: an alternative to effective roughness lengths. Q J R Meteor Soc 127(573):759–777.  https://doi.org/10.1256/smsqj.57302 Google Scholar
  54. Wu GX, Chen SJ (1985) The effect of mechanical forcing on the formation of a mesoscale vortex. Q J R Meteor Soc 111(470):1049–1070.  https://doi.org/10.1256/smsqj.47008 CrossRefGoogle Scholar
  55. Wu GX, Liu YM, Dong BW, Liang XY, Duan AM, Bao Q, Yu JJ (2012) Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation. Clim Dyn 39(5):1169–1181.  https://doi.org/10.1007/s00382-012-1334-z CrossRefGoogle Scholar
  56. Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteorol Soc 93(9):1401–1415.  https://doi.org/10.1175/Bams-D-11-00122.1 CrossRefGoogle Scholar
  57. Ye BS, Yang DQ, Ding YJ, Han TD, Koike T (2004) A bias-corrected precipitation climatology for China. J Hydrometeorol 5(6):1147–1160.  https://doi.org/10.1175/Jhm-366.1 CrossRefGoogle Scholar
  58. Zadra A (2013) WGNE drag project: an inter-model comparison of surface stresses, edited. http://collaboration.cmc.ec.gc.ca/science/rpn/drag_project/documents/wgne_drag_project_report01.pdf
  59. Zhang YC, Huang AN, Zhu XS (2006) Parameterization of the thermal impacts of sub-grid orography on numerical modeling of the surface energy budget over East Asia. Theor Appl Climatol 86(1–4):201–214.  https://doi.org/10.1007/s00704-005-0209-1 CrossRefGoogle Scholar
  60. Zheng DH, Van der Velde R, Su ZB, Wen J, Wang X, Booij MJ, Hoekstra AY, Lv SH, Zhang Y, Ek MB (2016) Impacts of Noah model physics on catchment-scale runoff simulations. J Geophys Res-Atmos 121(2):807–832.  https://doi.org/10.1002/2015jd023695 CrossRefGoogle Scholar
  61. Zhou X, Beljaars ACM, Wang Y, Huang B, Lin C, Chen Y, Wu H (2017) Evaluation of WRF simulations with different selections of sub-grid orographic drag over the Tibetan plateau. J Geophys Res-Atmos 122:7755–7771.  https://doi.org/10.1002/2016JD026213 CrossRefGoogle Scholar
  62. Zhou X, Yang K, Wang Y (2018) Implementation of a turbulent orographic form drag scheme in WRF and its application to the Tibetan Plateau. Clim Dyn 50(7–8):2243–2255.  https://doi.org/10.1007/s00382-017-3677-y Google Scholar
  63. Zhu ML, Yao TD, Yang W, Xu BQ, Wu GJ, Wang XJ (2018) Differences in mass balance behavior for three glaciers from different climatic regions on the Tibetan Plateau (vol 50, pg 3457, 2018). Clim Dyn 50(1–2):769–769.  https://doi.org/10.1007/s00382-017-3915-3 CrossRefGoogle Scholar
  64. Zuo ZY, Zhang RH, Zhao P (2011) The relation of vegetation over the Tibetan Plateau to rainfall in China during the boreal summer. Clim Dyn 36(5–6):1207–1219.  https://doi.org/10.1007/s00382-010-0863-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xu Zhou
    • 1
  • Kun Yang
    • 1
    • 2
    • 3
    Email author
  • Anton Beljaars
    • 4
  • Huidong Li
    • 5
  • Changgui Lin
    • 6
  • Bo Huang
    • 7
  • Yan Wang
    • 2
  1. 1.TEL and CETES, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  2. 2.Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.European Centre for Medium-range Weather Forecasts (ECMWF)ReadingUK
  5. 5.Institute of MeteorologyFreie Universität BerlinBerlinGermany
  6. 6.Regional Climate Group, Department of Earth SciencesUniversity of GothenburgGothenburgSweden
  7. 7.Industrial Ecology Programme, Department of Energy and Process EngineeringNorwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations