Advertisement

A network-based comparative study of extreme tropical and frontal storm rainfall over Japan

  • Ugur OzturkEmail author
  • Nishant Malik
  • Kevin Cheung
  • Norbert Marwan
  • Juergen Kurths
Article

Abstract

Frequent and intense rainfall events demand innovative techniques to better predict the extreme rainfall dynamics. This task requires essentially the assessment of the basic types of atmospheric processes that trigger extreme rainfall, and then to examine the differences between those processes, which may help to identify key patterns to improve predictive algorithms. We employ tools from network theory to compare the spatial features of extreme rainfall over the Japanese archipelago and surrounding areas caused by two atmospheric processes: the Baiu front, which occurs mainly in June and July (JJ), and the tropical storms from August to November (ASON). We infer from complex networks of satellite-derived rainfall data, which are based on the nonlinear correlation measure of event synchronization. We compare the spatial scales involved in both systems and identify different regions which receive rainfall due to the large spatial scale of the Baiu and tropical storm systems. We observed that the spatial scales involved in the Baiu driven rainfall extremes, including the synoptic processes behind the frontal development, are larger than tropical storms, which even have long tracks during extratropical transitions. We further delineate regions of coherent rainfall during the two seasons based on network communities, identifying the horizontal (east–west) rainfall bands during JJ over the Japanese archipelago, while during ASON these bands align with the island arc of Japan.

Keywords

Extreme rainfall Baiu Tropical storms Event synchronization Complex networks 

Notes

Acknowledgements

We thank Ankit Agarwal, Aljoscha Rheinwalt and Bedartha Goswami for helping with some of the computations. We acknowledge Vera Ozturk for helping us in visualization. We also thank Kevin Fleming for proofreading the manuscript. Our research is funded by the Deutsche Forschungsgemeinschaft within the Research Training Group “Natural Hazards and Risks in a Changing World (NatRiskChange)” (DFG GRK 2043/1) at the University of Potsdam. Ugur Ozturk is partly funded by the Federal Ministry of Education and Research (BMBF) within the project CLIENT II-CaTeNA (FKZ 03G0878A). We are grateful to the Tropical Rainfall Measuring Mission (TRMM) for providing the data for this research (https://pmm.nasa.gov/data-access/downloads/trmm).

References

  1. Agarwal A, Marwan N, Rathinasamy M, Merz B, Kurths J (2017) Multi-scale event synchronization analysis for unravelling climate processes: a wavelet-based approach. Nonlinear Process Geophys 24(4):599–611.  https://doi.org/10.5194/npg-24-599-2017 CrossRefGoogle Scholar
  2. Agarwal A, Marwan N, Maheswaran R, Merz B, Kurths J (2018a) Quantifying the roles of single stations within homogeneous regions using complex network analysis. J Hydrol 563:802–810.  https://doi.org/10.1016/j.jhydrol.2018.06.050 CrossRefGoogle Scholar
  3. Agarwal A, Marwan N, Rathinasamy M, Ozturk U, Merz B, Kurths J (2018b) Optimal design of hydrometric station networks based on complex network analysis. Hydrol Earth Syst Sci Discuss.  https://doi.org/10.5194/hess-2018-113
  4. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 10:P10008.  https://doi.org/10.1088/1742-5468/2008/10/P10008 CrossRefGoogle Scholar
  5. Boers N, Bookhagen B, Barbosa HMJ, Marwan N, Kurths J, Marengo JA (2014a) Prediction of extreme floods in the eastern Central Andes based on a complex networks approach. Nat Commun 5:5199.  https://doi.org/10.1038/ncomms6199 CrossRefGoogle Scholar
  6. Boers N, Rheinwalt A, Bookhagen B, Barbosa HMJ, Marwan N, Marengo J, Kurths J (2014b) The South American rainfall dipole: a complexnetwork analysis of extreme events: BOERS ET AL. Geophys Res Lett 41(20):7397–7405.  https://doi.org/10.1002/2014GL061829 CrossRefGoogle Scholar
  7. Castellano CM, DeGaetano AT (2016) A multi-step approach for downscaling daily precipitation extremes from historical analogues: downscaling precipitation extremes from historical analogues. Int J Climatol 36(4):1797–1807.  https://doi.org/10.1002/joc.4460 CrossRefGoogle Scholar
  8. Chen GTJ (2002) Convection and local circulations under the influence of Meiyu front over Northern Taiwan. In: East Asia and Western Pacific meteorology and climate, world scientific series on Asia-Pacific Weather and Climate, vol 1. World Scientific Publishing Co, pp 275–292.  https://doi.org/10.1142/9789812777744_0026
  9. Donges JF, Zou Y, Marwan N, Kurths J (2009) Complex networks in climate dynamics. Eur Phys J Spec Top 174(1):157–179.  https://doi.org/10.1140/epjst/e2009-01098-2 CrossRefGoogle Scholar
  10. Duch J, Arenas A (2005) Community detection in complex networks using extremal optimization. Phys Rev E . https://doi.org/10.1103/PhysRevE.72.027104
  11. Dunnavan GM, Diercks JW (1980) An analysis of super typhoon tip (October 1979). Mon Weather Rev 108(11):1915–1923.  https://doi.org/10.1175/1520-0493(1980)108<1915:AAOSTT>2.0.CO;2
  12. Enomoto T, Hoskins BJ, Matsuda Y (2003) The formation mechanism of the Bonin high in August. Q J R Meteorol Soc 129(587):157–178.  https://doi.org/10.1256/qj.01.211 CrossRefGoogle Scholar
  13. Fang K, Sivakumar B, Woldemeskel FM (2017) Complex networks, community structure, and catchment classification in a large-scale river basin. J Hydrol 545:478–493.  https://doi.org/10.1016/j.jhydrol.2016.11.056 CrossRefGoogle Scholar
  14. Fortunato S, Hric D (2016) Community detection in networks: a user guide. Phys Rep 659:1–44.  https://doi.org/10.1016/j.physrep.2016.09.002 CrossRefGoogle Scholar
  15. Fukui E (1970) Distribution of extraordinarily heavy rainfalls in Japan. Geogr Rev Jpn 43(10):581–593.  https://doi.org/10.4157/grj.43.581 CrossRefGoogle Scholar
  16. Grossman M, Zaiki M (2009) Reconstructing typhoons in Japan in the 1880s from documentary records. Weather 64(12):315–322.  https://doi.org/10.1002/wea.401 CrossRefGoogle Scholar
  17. Grossman MJ, Zaiki M, Nagata R (2015) Interannual and interdecadal variations in typhoon tracks around Japan: interannual and interdecadal variations in typhoon tracks around Japan. Int J Climatol 35(9):2514–2527.  https://doi.org/10.1002/joc.4156 CrossRefGoogle Scholar
  18. Hartmann D, Klein Tank A, Rusicucci M, Alexander L, Broenniman B, Charabi Y, Dentener F, Dlugokencky E, Easterling D, Kaplan A (2013) Observations: atmosphere and surface. In: Climate change 2013: the physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 159–254.  https://doi.org/10.1017/CBO9781107415324.008
  19. Heistermann M, Crisologo I, Abon CC, Racoma BA, Jacobi S, Servando NT, David CPC, Bronstert A (2013) Brief communication “Using the new Philippine radar network to reconstruct the Habagat of August 2012 monsoon event around Metropolitan Manila”. Nat Hazards Earth Syst Sci 13(3):653–657.  https://doi.org/10.5194/nhess-13-653-2013 CrossRefGoogle Scholar
  20. Imaizumi F, Sidle RC, Togari-Ohta A, Shimamura M (2015) Temporal and spatial variation of infilling processes in a landslide scar in a steep mountainous region, Japan: Infilling Process in a Landslide Scar in a Steep Region. Earth Surf Process Landf 40(5):642–653.  https://doi.org/10.1002/esp.3659 CrossRefGoogle Scholar
  21. Jha SK, Zhao H, Woldemeskel FM, Sivakumar B (2015) Network theory and spatial rainfall connections: an interpretation. J Hydrol 527:13–19.  https://doi.org/10.1016/j.jhydrol.2015.04.035 CrossRefGoogle Scholar
  22. Kanae S, Oki T, Kashida A (2004) Changes in hourly heavy precipitation at Tokyo from 1890 to 1999. J Meteorol Soc Jpn 82(1):241–247.  https://doi.org/10.2151/jmsj.82.241 CrossRefGoogle Scholar
  23. Kim JH, Ho CH, Lee MH, Jeong JH, Chen D (2006) Large increase in heavy rainfall associated with tropical cyclone landfalls in Korea after the late 1970s: heavy rainfall and tropical cyclones in Korea. Geophys Res Lett 33(18):L18706.  https://doi.org/10.1029/2006GL027430 CrossRefGoogle Scholar
  24. Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3(3):157–163.  https://doi.org/10.1038/ngeo779 CrossRefGoogle Scholar
  25. Krishnan R, Sugi M (2001) Baiu rainfall variability and associated monsoon teleconnections. J Meteorol Soc Jpn 79(3):851–860.  https://doi.org/10.2151/jmsj.79.851 CrossRefGoogle Scholar
  26. Laing A, Evans JL (2015) Global circulation. In: Introduction to tropical meteorology, Chap 3, 2nd edn. COMET. https://www.meted.ucar.edu/sign_in.php?go_back_to=/tropical/textbook/
  27. Lind P, Lindstedt D, Kjellström E, Jones C (2016) Spatial and temporal characteristics of summer precipitation over central Europe in a suite of high-resolution climate models. J Clim 29(10):3501–3518.  https://doi.org/10.1175/JCLI-D-15-0463.1 CrossRefGoogle Scholar
  28. Malik N, Marwan N, Kurths J (2010) Spatial structures and directionalities in monsoonal precipitation over South Asia. Nonlinear Process Geophys 17(5):371–381.  https://doi.org/10.5194/npg-17-371-2010 CrossRefGoogle Scholar
  29. Malik N, Bookhagen B, Marwan N, Kurths J (2012) Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks. Clim Dyn 39(3–4):971–987.  https://doi.org/10.1007/s00382-011-1156-4 CrossRefGoogle Scholar
  30. Malik N, Bookhagen B, Mucha PJ (2016) Spatiotemporal patterns and trends of Indian monsoonal rainfall extremes: SPATIOTEMPORAL PATTERNS AND TRENDS. Geophys Res Lett 43(4):1710–1717.  https://doi.org/10.1002/2016GL067841 CrossRefGoogle Scholar
  31. Maloney ED, Hartmann DL (2001) The Madden-Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: observations. J Atmos Sci 58(17):2545–2558.  https://doi.org/10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2
  32. Manda A, Nakamura H, Asano N, Iizuka S, Miyama T, Moteki Q, Yoshioka MK, Nishii K, Miyasaka T (2014) Impacts of a warming marginal sea on torrential rainfall organized under the Asian summer monsoon. Sci Rep.  https://doi.org/10.1038/srep05741
  33. Matsumoto J (1989) Heavy rainfalls over East Asia. Int J Climatol 9(4):407–423.  https://doi.org/10.1002/joc.3370090407 CrossRefGoogle Scholar
  34. Monaghan AJ, Rife DL, Pinto JO, Davis CA, Hannan JR (2010) Global precipitation extremes associated with diurnally varying low-level jets. J Clim 23(19):5065–5084.  https://doi.org/10.1175/2010JCLI3515.1 CrossRefGoogle Scholar
  35. Murakami H, Wang B, Kitoh A (2011) Future change of western north pacific typhoons: projections by a 20-km-mesh global atmospheric model. J Clim 24(4):1154–1169.  https://doi.org/10.1175/2010JCLI3723.1 CrossRefGoogle Scholar
  36. Nakazawa T (2006) Madden–Julian oscillation activity and typhoon landfall on Japan in 2004. SOLA 2:136–139.  https://doi.org/10.2151/sola.2006-035 CrossRefGoogle Scholar
  37. Newman MEJ (2010) Networks: an introduction. Oxford University Press, Oxford, New York (oCLC: ocn456837194)Google Scholar
  38. Ninomiya K, Akiyama T (1992) Multi-scale features of Baiu, the summer monsoon over Japan and the East Asia. J Meteorol Soc Jpn Ser II 70(1B):467–495.  https://doi.org/10.2151/jmsj1965.70.1B_467 CrossRefGoogle Scholar
  39. Ninomiya K, Muraki H (1986) Large-scale circulations over east asia during Baiu period of 1979. J Meteorol Soc Jpn Ser II 64(3):409–429.  https://doi.org/10.2151/jmsj1965.64.3_409 CrossRefGoogle Scholar
  40. Ninomiya K, Shibagaki Y (2007) Multi-scale features of the Meiyu–Baiu front and associated precipitation systems. J Meteorol Soc Jpn 85B:103–122.  https://doi.org/10.2151/jmsj.85B.103 CrossRefGoogle Scholar
  41. Ninomiya R (1984) Characteristics of Baiu front as a predominant subtropical front in the summer northern hemisphere. J Meteorol Soc Jpn 62(6):880–894CrossRefGoogle Scholar
  42. Okada Y, Yamazaki K (2012) Climatological evolution of the Okinawa Baiu and differences in large-scale features during May and June. J Clim 25(18):6287–6303.  https://doi.org/10.1175/JCLI-D-11-00631.1 CrossRefGoogle Scholar
  43. Ozturk U, Marwan N, Korup O, Saito H, Agarwal A, Grossman MJ, Zaiki M, Kurths J (2018) Complex networks for tracking extreme rainfall during typhoons. Chaos Interdiscip J Nonlinear Sci 28(7):075301.  https://doi.org/10.1063/1.5004480
  44. Quiroga RQ, Kreuz T, Grassberger P (2002) Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Phys Rev E.  https://doi.org/10.1103/PhysRevE.66.041904
  45. Rheinwalt A, Marwan N, Kurths J, Werner P, Gerstengarbe FW (2012) Boundary effects in network measures of spatially embedded networks. EPL (Europhys Lett) 100(2):28,002.  https://doi.org/10.1209/0295-5075/100/28002 CrossRefGoogle Scholar
  46. Sabidussi G (1966) The centrality index of a graph. Psychometrika 31(4):581–603.  https://doi.org/10.1007/BF02289527 CrossRefGoogle Scholar
  47. Saito H, Nakayama D, Matsuyama H (2010) Relationship between the initiation of a shallow landslide and rainfall intensityduration thresholds in Japan. Geomorphology 118(1–2):167–175.  https://doi.org/10.1016/j.geomorph.2009.12.016 CrossRefGoogle Scholar
  48. Sampe T, Xie SP (2010) Large-scale dynamics of the Meiyu–Baiu rainband: environmental forcing by the westerly jet. J Clim 23(1):113–134.  https://doi.org/10.1175/2009JCLI3128.1 CrossRefGoogle Scholar
  49. Sato T (2013) Mechanism of orographic precipitation around the Meghalaya Plateau associated with intraseasonal oscillation and the Diurnal cycle. Mon Weather Rev 141(7):2451–2466.  https://doi.org/10.1175/MWR-D-12-00321.1 CrossRefGoogle Scholar
  50. Schieber TA, Carpi L, Díaz-Guilera A, Pardalos PM, Masoller C, Ravetti MG (2017) Quantification of network structural dissimilarities. Nat Commun 8(13):928.  https://doi.org/10.1038/ncomms13928 CrossRefGoogle Scholar
  51. Shimazu Y (1998) Classification of precipitation systems in mature and early weakening stages of typhoons around Japan. J Meteorol Soc Jpn Ser II 76(3):437–445.  https://doi.org/10.2151/jmsj1965.76.3_437 CrossRefGoogle Scholar
  52. Stolbova V, Martin P, Bookhagen B, Marwan N, Kurths J (2014) Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka. Nonlinear Process Geophys 21(4):901–917.  https://doi.org/10.5194/npg-21-901-2014 CrossRefGoogle Scholar
  53. Stolbova V, Surovyatkina E, Bookhagen B, Kurths J (2016) Tipping elements of the Indian monsoon: prediction of onset and withdrawal: tipping elements of monsoon. Geophys Res Lett 43(8):3982–3990.  https://doi.org/10.1002/2016GL068392 CrossRefGoogle Scholar
  54. Suda K, Asakura T (1955) A study on the unusual “Baiu” season in 1954 by means of northern hemisphere upper air mean charts. J Meteorol Soc Jpn Ser II 33(6):233–244.  https://doi.org/10.2151/jmsj1923.33.6_233 CrossRefGoogle Scholar
  55. TRMM (2011) TRMM (TMPA) rainfall estimate L3 3 hour 0.25 degree x 0.25 degree V7. Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD.  https://doi.org/10.5067/TRMM/TMPA/3H/7. Accessed 24 Feb 2016
  56. Tsonis AA, Swanson KL (2008) Topology and predictability of El Niño and La Niña networks. Phys Rev Lett.  https://doi.org/10.1103/PhysRevLett.100.228502
  57. Tsonis AA, Swanson KL, Roebber PJ (2006) What do networks have to do with climate? Bull Am Meteorol Soc 87(5):585–595.  https://doi.org/10.1175/BAMS-87-5-585 CrossRefGoogle Scholar
  58. Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393(6684):440–442.  https://doi.org/10.1038/30918 CrossRefGoogle Scholar
  59. Webster PJ (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309(5742):1844–1846.  https://doi.org/10.1126/science.1116448 CrossRefGoogle Scholar
  60. Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, Kendon EJ, Lenderink G, Roberts NM (2014) Future changes to the intensity and frequency of short-duration extreme rainfall: future intensity of sub-daily rainfall. Rev Geophys 52(3):522–555.  https://doi.org/10.1002/2014RG000464 CrossRefGoogle Scholar
  61. Wolf F, Kirsch C, Donner RV (2019) Edge directionality properties in complex spherical networks. Phys Rev E 99(1):012301.  https://doi.org/10.1103/PhysRevE.99.012301 CrossRefGoogle Scholar
  62. Wu L, Wang B, Geng S (2005) Growing typhoon influence on east Asia: growing typhoon influence on east asia. Geophys Res Lett 32(18):L18703.  https://doi.org/10.1029/2005GL022937 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Earth and Environmental SciencesUniversity of PotsdamPotsdamGermany
  2. 2.Potsdam Institute for Climate Impact Research, PIKPotsdamGermany
  3. 3.Helmholtz Centre Potsdam, GFZ German Research Centre for GeosciencesPotsdamGermany
  4. 4.School of Mathematical SciencesRochester Institute of TechnologyRochesterUSA
  5. 5.Department of Environmental SciencesMacquarie UniversitySydneyAustralia
  6. 6.Department of PhysicsHumboldt UniversityBerlinGermany

Personalised recommendations