Advertisement

Simulating the Antarctic stratospheric vortex transport barrier: comparing the Unified Model to reanalysis

  • Chris CameronEmail author
  • Gregory E. Bodeker
  • Jonathan P. Conway
  • Stephen Stuart
  • James Renwick
Article

Abstract

An assessment has been made of the ability of the UK Met Office Unified Model (UM) to simulate the Antarctic stratospheric circumpolar vortex and, in particular, the extent to which the vortex acts as a barrier to meridional transport. It is important that models simulate this barrier well as it determines spatial gradients in radiatively active gases, such as ozone, which then determine the spatial morphology of the radiative forcing field. The assessment was made by comparing metrics of meridional impermeability calculated from dynamical fields extracted from UM simulations and from analogous fields obtained from NCEP-CFSR reanalysis. Two different UM configurations were assessed: global atmosphere 3.0 (GA3.0) using the New Dynamics dynamical core, and GA7.0 using the newer ENDGame dynamical core, with both versions run at N96 resolution (1.25\(^{\circ }\) latitude by 1.875\(^{\circ }\) longitude). The GA7.0 configuration appears to better simulate the dynamical isolation of the Antarctic stratospheric vortex in the lower stratosphere up to about 600 K, while GA3.0 provides a better simulation in the upper stratosphere. However, neither UM configuration simulates the same degree of dynamical isolation suggested by the reanalysis. In particular the UM configurations produce a wider and more poleward meridional band of high wind-speed and steep PV gradients when compared with the NCEP-CFSR reanalysis, leading to a stronger barrier in GA7.0 and a weaker barrier in GA3.0. Possible causes of discrepancies between model simulations and reanalysis and between the two model configurations are discussed. It is pointed out that further work is needed to identify ways of resolving these discrepancies in model simulations.

Keywords

Antarctic stratospheric circumpolar vortex Meridional impermeability Dynamical isolation Unified Model NCEP-CFSR reanalysis Ozone hole Global climate models Climate change 

Notes

Acknowledgements

We would like to acknowledge the support of the Marsden Fund (contract BDS1401) of the Royal Society of New Zealand in making this research possible. We also acknowledge the contribution of high-performance computing facilities from the New Zealand eScience Infrastructure (NeSI), Sam Dean, Jonny Williams and Olaf Morgenstern from NIWA, and João Teixeira from the UK Met Office. High-resolution SST and sea ice data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA.

References

  1. Allen DR, Nakamura N (2003) Tracer equivalent latitude: a diagnostic tool for isentropic transport studies. J Atmos Sci 60:287–304CrossRefGoogle Scholar
  2. Andrews D, Holton J, Leovy C (1987) Middle atmosphere dynamics. Academic Press, LondonGoogle Scholar
  3. Baldwin MP, Dunkerton TJ (1999) Propagation of the Arctic oscillation from the stratosphere to the troposphere. J Geophys Res 104(D24):30937–30946CrossRefGoogle Scholar
  4. Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584CrossRefGoogle Scholar
  5. Black RX, McDaniel BA (2007) Interannual variability in the southern hemisphere circulation organized by stratospheric final warming events. J Atmos Sci 64:2968–2974CrossRefGoogle Scholar
  6. Bodeker GE, Struthers H, Connor BJ (2002) Dynamical containment of Antarctic ozone depletion. Geophys Res Lett 29:7.  https://doi.org/10.1029/2001GL014206 CrossRefGoogle Scholar
  7. Butchart N, Remsberg EE (1986) The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface. J Atmos Sci 43(13):1319–1339CrossRefGoogle Scholar
  8. Butchart N, Austin J, Knight JR, Scaife AA, Gallani ML (2000) The response of the stratospheric climate to projected changes in the concentrations of well-mixed greenhouse gases from 1992 to 2051. J Clim 13:2142–2159CrossRefGoogle Scholar
  9. Butchart N, Charlton-Perez AJ, Cionni I, Hardiman SC, Haynes PH, Krüger K, Kushner PJ, Newman PA, Osprey SM, Perlwitz J, Sigmond M, Wang L, Akiyoshi H, Austin J, Bekki S, Baumgaertner A, Braesicke P, Brühl C, Chipperfield M, Dameris M, Dhomse S, Eyring V, Garcia R, Garny H, Jöckel P, Lamarque JF, Marchand M, Michou M, Morgenstern O, Nakamura T, Pawson S, Plummer D, Pyle J, Rozanov E, Scinocca J, Shepherd TG, Shibata K, Smale D, Teyssèdre H, Tian W, Waugh D, Yamashita Y (2011) Multimodel climate and variability of the stratosphere. J Geophys Res Atmos 116:D05102CrossRefGoogle Scholar
  10. Cameron C, Bodeker GE, Conway JP, Revell LE, Stenke A, Renwick J (submitted) Comparing the effects of the dimensionality of prescribed and interactive ozone on the fidelity of the Antarctic stratospheric vortex in a global climate model. GRL (submitted) Google Scholar
  11. Conway J, Bodeker GE, Cameron C (2018) Bifurcation of potential vorticity gradients across the Southern Hemisphere stratospheric polar vortex. Atmos Chem Phys 18:80658077CrossRefGoogle Scholar
  12. Crook JA, Gillett NP, Keeley SP (2008) Sensitivity of Southern Hemisphere climate to zonal asymmetry in ozone. Geophys Res Lett 35:L07806.  https://doi.org/10.1029/2007GL032698 CrossRefGoogle Scholar
  13. Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth A, White AA, Wood N (2005) A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q J R Meteorol Soc 131(608):1759–1782CrossRefGoogle Scholar
  14. Dennison F, McDonald A, Morgenstern O (2017) The evolution of zonally asymmetric austral ozone in a chemistry climate model. Atmos Chem Phys 17(22):14075–14084CrossRefGoogle Scholar
  15. Eyring V, Arblaster JM, Cionni I (2013) Long-term ozone changes and associated climate impacts in CMIP5 simulations. J Geophys Res 118(5029–5060):50316.  https://doi.org/10.1002/jgrd CrossRefGoogle Scholar
  16. Garcia RR, Smith AK, Kinnison DE, Cámara Á, Murphy DJ (2017) Modification of the gravity wave parameterization in the Whole Atmosphere Community Climate Model: motivation and results. J Atmos Sci 74(1):275–291CrossRefGoogle Scholar
  17. Hardiman SC, Butchart N, O’Connor FM, Rumbold ST (2017) The Met Office HadGEM3-ES chemistry-climate model: evaluation of stratospheric dynamics and its impact on ozone. Geosci Mod Dev 10(3):1209–1232CrossRefGoogle Scholar
  18. Harvey VL, Randall CE, Hitchman MH (2009) Breakdown of potential vorticity-based equivalent latitude as a vortex-centered coordinate in the polar winter mesosphere. J Geophys Res 114:D22105.  https://doi.org/10.1029/2009JD012681 CrossRefGoogle Scholar
  19. Hegglin MI, Kinnison D, Plummer D, et al (in preparation) Historical and future ozone database (1850-2100) in support of CMIP6. Geosci Model DevGoogle Scholar
  20. Holton JR (2004) An introduction to dynamic meteorology. Elsevier Academic Press, USAGoogle Scholar
  21. Holton JR, Haynes PH, McIntyre ME, Douglass AR, Rood RB, Pfister L (1995) Stratosphere–troposphere exchange. Rev Geophys 33(4):403–439CrossRefGoogle Scholar
  22. Hoskins BJ, McIntyre ME, Robertson AW (1985) On the use and significance of isentropic potential vorticity maps. Q J R Meteorol Soc 111:877–946CrossRefGoogle Scholar
  23. Ivy DJ, Hilgenbrink C, Kinnison D, Plumb RA, Sheshadri A, Solomon S, Thompson DWJ (2017) Observed changes in the southern hemispheric circulation in May. J ClimGoogle Scholar
  24. Kidston J, Scaife AA, Hardiman SC et al (2015) Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat Geosci 8:2015CrossRefGoogle Scholar
  25. Lait L (1994) An alternative form of potential vorticity. J Atmos Sci 51:17541759.  https://doi.org/10.1175/1520-0469 CrossRefGoogle Scholar
  26. Li F, Vikhliaev YV, Newman PA (2016) Impacts of interactive stratospheric chemistry on Antarctic and Southern Ocean climate change in the Goddard Earth Observing System, Version 5 (GEOS-5). J Clim 29(9):3199–3218CrossRefGoogle Scholar
  27. Manney GL, Swinban R, Massie ST (1996) Comparison of UK Meteorological Office and US National Meteorological Center stratospheric analyses during northern and southern winter. J Geophys Res 101(D6):10,311–10,334CrossRefGoogle Scholar
  28. McIntyre ME, Palmer TN (1984) The ‘surf zone’ in the stratosphere. J Atmos Terrestrial Phys 46(9):825–849CrossRefGoogle Scholar
  29. McLandress C, Shepherd TG, Scinocca JF (2011) Separating the Dynamical effects of climate change and ozone depletion. Part II: Southern hemisphere troposphere. J Clim 24:1850–1868CrossRefGoogle Scholar
  30. Morgenstern O, Braesicke P, O’Connor FM (2009) Evaluation of the new UKCA climate-composition model Part 1: The stratosphere. Geoscie Model Dev 2(1):43–57CrossRefGoogle Scholar
  31. Nash ER, Newman PA, Rosenfield JE, Schoeberl MR (1996) An objective determination of the polar vortex using Ertel’s potential vorticity. J Geophys Res 101(D5):9471–9478CrossRefGoogle Scholar
  32. Neely RR, Marsh DR, Smith KL (2014) Biases in southern hemisphere climate trends induced by coarsely specifying the temporal resolution of stratospheric ozone. Geophys Res Lett 2014:41Google Scholar
  33. Plumb RA, Ko MKW (1992) Interrelationships between mixing ratios of long-lived stratospheric constituents. J Geophys Res 97(D9):10145–10156CrossRefGoogle Scholar
  34. Polvani LM, Previdi M, Deser C (2011) Large cancellation, due to ozone recovery, of future southern hemisphere atmospheric circulation trends. Geophys Res Lett 38:L04707CrossRefGoogle Scholar
  35. Reynolds RW, Smith TM, Liu C (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20(22):5473–5496CrossRefGoogle Scholar
  36. Saha S, Moorthi S, Wu X (2014) The NCEP climate forecast system version 2. J Clim 27:21852208.  https://doi.org/10.1175/jcli-d-12-00823.1 CrossRefGoogle Scholar
  37. Scaife AA, Butchart N, Warner CD, Swinbank R (2002) Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model. J Atmos Sci 59(9):1473–1489CrossRefGoogle Scholar
  38. Schoeberl MR, Hartmann DL (1991) The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science 251(4989):46–52CrossRefGoogle Scholar
  39. SPARC CCMVal (2010) Report on the evaluation of chemistry-climate models. Eyring V, Shepherd TG, Waugh DW (eds) SPARC Report No. 5, WCRP-X, WMO/TD-No. XGoogle Scholar
  40. Struthers H, Bodeker GE, Austin J (2009) The simulation of the Antarctic ozone hole by chemistry-climate models. Atmos Chem Phys 9(17):6363–6376CrossRefGoogle Scholar
  41. Thompson DWJ, Solomon S (2002) Interpretation of recent southern hemisphere climate change. Science 296:895–899CrossRefGoogle Scholar
  42. Thompson DWJ, Solomon S, Kushner PJ, et al (2011) Signatures of the Antarctic ozone hole in southern hemisphere surface climate change. Nat Geosci.  https://doi.org/10.1038/NGEO1296
  43. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016CrossRefGoogle Scholar
  44. Vosper SB (2015) Mountain waves and wakes generated by South Georgia: implications for drag parametrization. Q J R Meteorol Soc 141(692):2813–2827CrossRefGoogle Scholar
  45. Walters D, Baran A, Boutle I, et al (in review) The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES global land 7.0 configurations. Geosci Model Dev Discuss.  https://doi.org/10.5194/gmd-2017-291
  46. Walters DN, Best MJ, Bushell AC (2011) The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations. Geosci Model Dev 4(4):919–941CrossRefGoogle Scholar
  47. Walters D, Boutle I, Brooks M (2017) The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geosci Model Dev 10:1487–1520.  https://doi.org/10.5194/gmd-10-1487-2017 CrossRefGoogle Scholar
  48. Waugh DW, Polvani LM (2010) Stratospheric polar vortices. In: Polvani LM, Sobel AH, Waugh DW (Eds) The stratosphere: dynamics, transport, and chemistry. Geophysical Monograph Series 190, American Geophysical UnionGoogle Scholar
  49. Webster S, Brown AR, Cameron DR, Jones CP (2003) Improvements to the representation of orography in the Met Office Unified Model. Q J R Meteorol Soc 129(591):1989–2010CrossRefGoogle Scholar
  50. Wood N, Staniforth A, White A (2014) An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Q J R Meteorol Soc 140:15051520.  https://doi.org/10.1002/qj.2235 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bodeker ScientificAlexandraNew Zealand
  2. 2.NIWAWellingtonNew Zealand
  3. 3.Victoria University of WellingtonWellingtonNew Zealand

Personalised recommendations