Advertisement

Why do we have El Niño: quantifying a diabatic and nonlinear perspective using observations

  • Lijuan Hua
  • De-Zheng SunEmail author
  • Yongqiang Yu
Article

Abstract

El Niño, due to its global impact on weather patterns, ecosystems, agriculture and public health, has become as commonly known to the public as the recent global warming. But why we have El Niño is not yet as well answered as it may have been assumed. Linear theories have been successful in explaining the transition from the warm phase to the cold phase of the eastern tropical Pacific that results from the rise and fall of El Niño, but failed to explain the asymmetry between the two phases. A nonlinear theory for El Niño has suggested that there exist two equilibrium states for the tropical Pacific—one is zonally symmetric (or nearly so) with the warm-pool extending all the way to the eastern Pacific, and the other is strongly zonally asymmetric with the warm-pool confined to the western half of the tropical Pacific. Under this hypothesis, ENSO results from the fact that under the current radiative heating, both states are unstable, resulting in the apparent “wandering” behavior in between these two states as seen in the observations. To test this hypothesis, the authors have obtained the best approximations for the two equilibrium states empirically using updated ocean assimilation data, and quantified the stability of these two empirically obtained equilibrium states using two stability analysis methods. The results suggest that the two states are unstable, offering support for the nonlinear view of why we have El Niño.

Keywords

El Niño Heat transport Ocean–atmosphere dynamics, nonlinear dynamics Climate variability and change 

Notes

Acknowledgements

This work was supported by the ESS program of the climate program office of NOAA (GC14-244), the large-scale and climate dynamics program of NSF (AGS0852329 and AGS1444489), the National Natural Science Foundation of China (No. 41606011), the State Key Program of National Natural Science Foundation of China (No. 41530426), and the Basic Scientific Research and Operation Foundation of CAMS (No. 2017Y007).

Supplementary material

382_2018_4541_MOESM1_ESM.docx (92 kb)
Supplementary material 1 (DOCX 92 KB)

References

  1. Adler RF et al (2003) The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  2. Battisti DS (1988) Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere-ocean model. J Atmos Sci 45:2889–2919CrossRefGoogle Scholar
  3. Behringer D, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. In: Eighth symp. on integrated observing and assimilation systems for atmosphere, oceans, and Land Surface, Seattle, WA, Amer Meteor Soc 2.3. https://ams.confex.com/ams/pdfpapers/70720.pdf (Preprints)
  4. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172CrossRefGoogle Scholar
  5. Bove MC, O’Brien JJ, Eisner JB, Landsea CW, Niu X (1998) Effect of El Niño on US landfalling hurricanes, revisited. Bull Am Meteorol Soc 79:2477–2482CrossRefGoogle Scholar
  6. Cane MA, Eshel G, Buckland RW (1994) Forecasting Zimbabwean maize yield using eastern equatorial Pacific sea surface temperature. Nature 370:204–205CrossRefGoogle Scholar
  7. Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation. Mon Weather Rev 136:2999–3017CrossRefGoogle Scholar
  8. Changnon SA (1999) Impacts of 1997–98 El Niño generated weather in the United States. Bull Am Meteorol Soc 80:1819–1827CrossRefGoogle Scholar
  9. Chen L, Yu YQ, Sun D-Z (2013) Cloud and water vapor feedbacks to the El Niño warming: are they still biased in CMIP5 Models? J Clim 26:4947–4961CrossRefGoogle Scholar
  10. Chen L, Yu YQ, Zheng WP (2016) Improved ENSO simulation from climate system model FGOALS-g1.0 to FGOALS-g2.0. Clim Dyn 47:2617–2634CrossRefGoogle Scholar
  11. Chen L, Li T, Wang B, Wang L (2017) Formation mechanism for 2015/16 super El Niño. Sci Rep 7:2975CrossRefGoogle Scholar
  12. Fedorov AV, Philander SG (2001) A stability analysis of tropical ocean-atmosphere interactions: bridging measurements and theory for El Niño. J Clim 14:3086–3101CrossRefGoogle Scholar
  13. Giese BS, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res 116:C02024CrossRefGoogle Scholar
  14. Glynn PW, de Weerdt WH (1991) Elimination of two reef-building hydrocorals following the 1982–83 El Niño. Science 253:69–71CrossRefGoogle Scholar
  15. Goddard L, Graham NE (1997) El Niño in the 1990s. J Geophys Res Ocean 102:10423–10436CrossRefGoogle Scholar
  16. Guilyardi E, Cai W, Collins M, Fedorov A, Jin F-F, Kumar A, Sun D-Z, Wittenberg A (2012) New strategies for evaluating ENSO processes in climate models. Bull Am Meteorol Soc 93:235–238CrossRefGoogle Scholar
  17. Hales S, Weinstein P, Sourares Y, Woodward A (1999) El Nino and the dynamics of vectorborne disease transmission. Environ Health Perspect 107:99–102Google Scholar
  18. Hua LJ, Yu YQ, Sun D-Z (2015) A further study of ENSO rectification: results from an OGCM with a seasonal cycle. J Clim 28:1362–1382CrossRefGoogle Scholar
  19. Hua L, Chen L, Rong X, Su J, Wang L, Yu Y, Li T (2018) Impact of atmospheric model resolution on simulation of ENSO feedback processes: a coupled model study. Clim Dyn 51:3077–3092CrossRefGoogle Scholar
  20. Lijuan Huaa, De-Zheng Sunb, Yongqiang Yuc Google Scholar
  21. Jin F-F (1996) Tropical ocean-atmosphere interaction, the Pacific cold tongue, and the El Niño Southern Oscillation. Science 274:76–78CrossRefGoogle Scholar
  22. Jin F-F, Kim ST, Bejarano L (2006) A coupled-stability index for ENSO. Geophys Res Lett 33:L23708CrossRefGoogle Scholar
  23. Kessler KS, McPhaden MJ (1995) Oceanic equatorial Kelvin waves and the 1991–1993 El-Niño. J Clim 8:1757–1774CrossRefGoogle Scholar
  24. Kim ST, Jin F-F (2011a) An ENSO stability analysis. Part I: results from a hybrid coupled model. Clim Dyn 36:1593–1607CrossRefGoogle Scholar
  25. Kim ST, Jin F-F (2011b) An ENSO stability analysis. Part II: results from the twentieth and twenty-first century simulations of the CMIP3 model. Clim Dyn 36:1609–1627CrossRefGoogle Scholar
  26. Kim ST, Cai W, Jin F-F, Yu J-Y (2014) ENSO stability in coupled climate models and its association with mean state. Clim Dyn 42:3313–3321CrossRefGoogle Scholar
  27. Kovats RS, Bouma MJ, Hajat S, Worrall E, Haines A (2003) El Niño and health. Lancet 362:1481–1489CrossRefGoogle Scholar
  28. Liang J, Yang XQ, Sun D-Z (2012) The effect of ENSO events on the Tropical Pacific Mean Climate: insights from an analytical model. J Clim 25:7590–7606CrossRefGoogle Scholar
  29. Liang J, Yang X-Q, Sun D-Z (2017) Factors determining the asymmetry of ENSO. J Climate 30(16):6097–6106CrossRefGoogle Scholar
  30. Lorenz E (1963) Deterministic nonperiodic flow. J Atmos Sci 20:131–141, 1963Google Scholar
  31. Lübbecke JF, McPhaden MJ (2014) Assessing the 21st century shift in ENSO variability in terms of the Bjerknes stability index. J Clim 27:2577–2587CrossRefGoogle Scholar
  32. McPhaden MJ (1999) Genesis and evolution of the 1997-98 El Niño. Science 283:950–954CrossRefGoogle Scholar
  33. McPhaden MJ (2015) Playing hide and seek with El Niño. Nat Clim Chang 5:791–795CrossRefGoogle Scholar
  34. Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim 13:3551–3559CrossRefGoogle Scholar
  35. Penland C (1996) A stochastic model of Indo-Pacific sea surface temperature anomalies. J Phys D 98:534–558CrossRefGoogle Scholar
  36. Penland C, Sardeshmuhk P (1995) The optimal growth of the tropical sea surface temperature anomalies. J Clim 8:1999–2024CrossRefGoogle Scholar
  37. Picaut J, Masia F, du Penhoat Y (1997) An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 277:663–666CrossRefGoogle Scholar
  38. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407CrossRefGoogle Scholar
  39. Rodgers KB, Friederichs P, Latif M (2004) Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J Clim 17:3761–3774CrossRefGoogle Scholar
  40. Ropelewski CF, Halpert MS (1987) Global and regional-scale precipitation patterns associated with the El Niño/Southern oscillation. Mon Weather Rev 115:1606–1626CrossRefGoogle Scholar
  41. Shuai J, Zhang Z, Sun D-Z, Tao F, Shi P (2013) ENSO, climate variability and crop yields in China. Clim Res 58:133–148CrossRefGoogle Scholar
  42. Smith RD, Dukowicz JK, Malone RC (1992) Parallel ocean general circulation modeling. Phys D 60:38–61CrossRefGoogle Scholar
  43. Stephens C, Antonov JI, Boyer TP, Conkright ME, Locarnini RA, O’Brien TD, Garcia HE (2002) Temperature, vol 1. World Ocean Atlas 2001, NOAA Atlas NESDIS 49 (+CD-ROMs), pp 167Google Scholar
  44. Strogatz SH (1994) Nonlinear dynamics and chaos. Addison-Wesley Publishing Company, Menlo Park, pp 498Google Scholar
  45. Su J, Zhang R, Li T, Rong X, Kug J, Hong C-C (2010) Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J Clim 23:605–617CrossRefGoogle Scholar
  46. Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3282–3287CrossRefGoogle Scholar
  47. Sun D-Z (1997) El Niño: a coupled response to radiative heating? Geophys Res Lett 24:2031–2034CrossRefGoogle Scholar
  48. Sun D-Z (2000) Global climate change and ENSO: a theoretical framework. In: Diaz HF, Markgraf V (eds) El Niño: historical and paleoclimatic aspects of the southern oscillation, multiscale variability, and global and regional impacts. Cambridge University Press, Cambridge, pp 443–463Google Scholar
  49. Sun D-Z, Zhang T (2006) A regulatory effect of ENSO on the time-mean thermal stratification of the equatorial upper ocean. Geophys Res Lett 33:L07710CrossRefGoogle Scholar
  50. Sun Y, Wang F, Sun D-Z (2016) Weak ENSO asymmetry due to weak nonlinear air-sea interaction in CMIP5 climate models. Adv Atmos Sci 33:352–364CrossRefGoogle Scholar
  51. Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  52. Wang L, Chen L (2016) Interannual variation of convectively-coupled equatorial waves and their association with environmental factors. Dyn Atmos Ocean 76:116–126CrossRefGoogle Scholar
  53. Wang B, Wu R, Fu X (2000) Pacific-east Asian teleconnection: how does ENSO affect east Asian climate. J Clim 13:1517–1536CrossRefGoogle Scholar
  54. Wesberg RH, Wang C (1997) A western Pacific oscillator paradigm for the El Niño- Southern Oscillation. Geophy Res Lett 24:779–782CrossRefGoogle Scholar
  55. Wyrtki K (1975) El Niño-the dynamical response of the equatorial upper ocean to atmospheric forcing. J Phys Oceanogr 5:572–584CrossRefGoogle Scholar
  56. Wyrtki K (1985) Water displacements in the Pacific and the genesis of El Niño cycles. J Geophys Res 90:7129–7132CrossRefGoogle Scholar
  57. Yu YQ, Sun D-Z (2009) Response of ENSO and the mean state of the tropical Pacific to extratropical cooling/warming: a study using the IAP coupled model. J Clim 22:5902–5917CrossRefGoogle Scholar
  58. Zebiak SE, Cane MA (1987) A model El Niño-Southern Oscillation. Mon Weather Rev 115:2262–2278CrossRefGoogle Scholar
  59. Zhang T, Sun D-Z (2014) ENSO asymmetry in CMIP5 models. J Clim 27:4070–4093CrossRefGoogle Scholar
  60. Zhang R, Sumi A, Kimoto M (1996) Impact of El Niño on the East Asian monsoon: a diagnostic study of the 86/87 and 91/92 events. J Meteorol Soc Jpn 74:49–62CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Severe Weather (LASW)Chinese Academy of Meteorological SciencesBeijingChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Department of Atmospheric and Oceanic SciencesUniversity of Colorado BoulderBoulderUSA
  4. 4.College of Earth and Planetary SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations