Advertisement

On the variability of the Atlantic meridional overturning circulation transports in coupled CMIP5 simulations

  • Xiaobiao Xu
  • Eric P. Chassignet
  • Fuchang Wang
Article

Abstract

The Atlantic meridional overturning circulation (AMOC) plays a fundamental role in the climate system, and long-term climate simulations are used to understand the AMOC variability and to assess its impact. This study examines the basic characteristics of the AMOC variability in 44 CMIP5 (Phase 5 of the Coupled Model Inter-comparison Project) simulations, using the 18 atmospherically-forced CORE-II (Phase 2 of the Coordinated Ocean-ice Reference Experiment) simulations as a reference. The analysis shows that on interannual and decadal timescales, the AMOC variability in the CMIP5 exhibits a similar magnitude and meridional coherence as in the CORE-II simulations, indicating that the modeled atmospheric variability responsible for AMOC variability in the CMIP5 is in reasonable agreement with the CORE-II forcing. On multidecadal timescales, however, the AMOC variability is weaker by a factor of more than 2 and meridionally less coherent in the CMIP5 than in the CORE-II simulations. The CMIP5 simulations also exhibit a weaker long-term atmospheric variability in the North Atlantic Oscillation (NAO). However, one cannot fully attribute the weaker AMOC variability to the weaker variability in NAO because, unlike the CORE-II simulations, the CMIP5 simulations do not exhibit a robust NAO-AMOC linkage. While the variability of the wintertime heat flux and mixed layer depth in the western subpolar North Atlantic is strongly linked to the AMOC variability, the NAO variability is not.

Notes

Acknowledgements

The work is supported by the NOAA-Earth System Prediction Capability Project (Award NA15OAR4320064) and by the NOAA Climate Program Office MAPP Program (Award NA15OAR4310088). The authors thank Drs. Kim and Danabasoglu for providing the preprocessed AMOC transports from 18 CORE-II simulations. The authors also thank three reviewers for their constructive suggestions, which improved the paper greatly.

References

  1. Böning CW, Scheinert M, Dengg J, Biastoch A, Funk A (2006) Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys Res Lett 33(S01):L21.  https://doi.org/10.1029/2006GL026906 CrossRefGoogle Scholar
  2. Cheng W, Chiang JCH, Zhang D (2013) Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J Clim 26(18):7187–7197.  https://doi.org/10.1175/JCLI-D-12-00496.1 CrossRefGoogle Scholar
  3. Clement A, Bellomo K, Murphy LN, Cane MA, Mauritsen T, Rädel G, Stevens B (2015) The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science 350(6258):320–324.  https://doi.org/10.1126/science.aab3980 CrossRefGoogle Scholar
  4. Clement A et al (2016) Response to comment on “The Atlantic Multidecadal Oscillation without a role for ocean circulation”. Science 352(6293):1527–1527.  https://doi.org/10.1126/science.aaf2575 CrossRefGoogle Scholar
  5. Collins M et al (2013) The physical science basis. In: Qin TF, Plattner D, Tignor GK, Allen M, Boschung SK, Nauels J, Xia A, Bex YV, Midgley PM (eds) Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker]. Cambridge University Press, CambridgeGoogle Scholar
  6. Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim 15(6):606–623CrossRefGoogle Scholar
  7. Danabasoglu G, Large WG, Briegleb BP (2010) Climate impacts of parameterized Nordic Sea overflows. J Geophys Res 115:C11CrossRefGoogle Scholar
  8. Danabasoglu G et al (2014) North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Model 73:76–107.  https://doi.org/10.1016/j.ocemod.2013.10.005 CrossRefGoogle Scholar
  9. Danabasoglu G et al (2016) North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Model 97:65–90.  https://doi.org/10.1016/j.ocemod.2015.11.007 CrossRefGoogle Scholar
  10. Day JJ, Hargreaves JC, Annan JD, Abe-Ouchi A (2012) Sources of multi-decadal variability in Arctic sea ice extent. Environ Res Lett.  https://doi.org/10.1088/1748-9326/7/3/034011 CrossRefGoogle Scholar
  11. Delworth TL, Zeng F (2016) The impact of the North Atlantic Oscillation on climate through its influence on the Atlantic overturning circulation. J Clim 29:941–962.  https://doi.org/10.1175/JCL-D-15-0396.1 CrossRefGoogle Scholar
  12. Delworth TL, Zhang R, Mann ME (2007) Decadal to centennial variability of the Atlantic from observations and models. In: Schmittner A, Chiang JCH, Hemming SR (eds) Ocean circulation: mechanisms and impacts-past and future changes of meridional overturning. AGU, Washington, D. C., pp 131–148.  https://doi.org/10.1029/173GM10 CrossRefGoogle Scholar
  13. Deshayes J, Frankignoul C (2008) Simulated variability of the circulation in the North Atlantic from 1953 to 2003. J Clim 21(19):4919–4933.  https://doi.org/10.1175/2008JCLI1882.1 CrossRefGoogle Scholar
  14. Frankignoul C, Gastineau G, Kwon YO (2017) Estimation of the SST response to anthropogenic and external forcing and its impact on the Atlantic multidecadal oscillation and the Pacific decadal oscillation. J Clim 30(24):9871–9895CrossRefGoogle Scholar
  15. Gastineau G, Frankignoul C (2012) Cold-season atmospheric response to the natural variability of the Atlantic meridional overturning circulation. Clim Dyn 39:37–57.  https://doi.org/10.1007/s00382-011-1109-y CrossRefGoogle Scholar
  16. Grégorio S, Penduff T, Sérazin G, Molines JM, Barnier B, Hirschi J (2015) Intrinsic variability of the Atlantic Meridional Overturning Circulation at interannual-to-multidecadal timescales. J Phys Oceanogr 45:1929–1946.  https://doi.org/10.1175/JPO-D-14-0163.1 CrossRefGoogle Scholar
  17. Holland DM, Thomas RH, De Young B, Ribergaard MH, Lyberth B (2008) Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat Geosci 1(10):659–664.  https://doi.org/10.1038/ngeo316 CrossRefGoogle Scholar
  18. Huang NE, Wu Z (2008) A review on Hilbert–Huang transform: method and its applications to geophysical studies. Rev Geophys 46:RG2006.  https://doi.org/10.1029/2007RG000228 CrossRefGoogle Scholar
  19. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679.  https://doi.org/10.1126/science.269.5224.676 CrossRefGoogle Scholar
  20. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) North Atlantic Oscillation: climate significance and environmental impact, geophysical monograph series. AGU, Washington, pp 1–35.  https://doi.org/10.1029/134GM01 CrossRefGoogle Scholar
  21. Kelly KA, Thompson L, Lyman J (2014) The coherence and impact of meridional heat transport anomalies in the Atlantic Ocean inferred from observations. J Clim 27:1469–1487.  https://doi.org/10.1175/JCLI-D-12-00131.1 CrossRefGoogle Scholar
  22. Kim WM, Yeager S, Chang P, Danabasoglu G (2017) Low-frequency North Atlantic climate variability in the community earth system model large ensemble. J Clim 31(2):787–813.  https://doi.org/10.1175/JCLI-D-17-0193.1 CrossRefGoogle Scholar
  23. Kirtman B et al (2013) Near-term climate change: projections and predictability. In: Qin TF, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker. Cambridge University Press, CambridgeGoogle Scholar
  24. Klöwer M, Latif M, Ding H, Greatbatch RJ, Park W (2014) Atlantic meridional overturning circulation and the prediction of North Atlantic sea surface temperature. Earth Planet Sci Lett 406:1–6.  https://doi.org/10.1016/j.epsl.2014.09.001 CrossRefGoogle Scholar
  25. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708.  https://doi.org/10.1029/2005GL024233 CrossRefGoogle Scholar
  26. Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. National Center for Atmospheric Research, BoulderGoogle Scholar
  27. Large WG, Yeager SG (2009) The global climatology of an interannually varying air–sea flux data set. Clim Dyn 33(2–3):341–364.  https://doi.org/10.1007/s00382-008-0441-3 CrossRefGoogle Scholar
  28. Legg S et al (2009) Improving oceanic overflow representation in climate models: the gravity current entrainment climate process team. Bull Am Meteorol Soc 90:657–670.  https://doi.org/10.1175/2008BAMS2667.1 CrossRefGoogle Scholar
  29. Lohmann K et al (2014) The role of subpolar deep water formation and Nordic Seas overflows in simulated multidecadal variability of the Atlantic meridional overturning circulation. Ocean Sci 10:227–241CrossRefGoogle Scholar
  30. Mahajan S, Zhang R, Delworth TL (2011) Impact of the Atlantic meridional overturning circulation (AMOC) on Arctic surface air temperature and sea ice variability. J Clim 24(24):6573–6581.  https://doi.org/10.1175/2011JCLI4002.1 CrossRefGoogle Scholar
  31. McCarthy GD et al (2015) Measuring the Atlantic meridional overturning circulation at 268N. Prog Oceanogr, 130, 91–111,  https://doi.org/10.1016/j.pocean.2014.10.006 CrossRefGoogle Scholar
  32. Peings Y, Simpkins G, Magnusdottir G (2016) Multidecadal fluctuations of the North Atlantic Ocean and feedback on the winter climate in CMIP5 control simulations. J Geophys Res Atmos 121:2571–2592.  https://doi.org/10.1002/2015JD024107 CrossRefGoogle Scholar
  33. Pyper BJ, Peterman RM (1998) Comparison of methods to account for autocorrelation in correlation analyses of fish data. Can J Fish Aquat Sci 55(9):2127–2140CrossRefGoogle Scholar
  34. Rhines PB, Häkkinen S, Josey SA (2008) Is oceanic heat transport significant in the climate system. In: Dickson RR, Meincke J, Rhines PB (eds) Arctic-Subarctic Ocean fluxes: defining the role of the Northern Seas in climate. Springer, New York, pp 87–109CrossRefGoogle Scholar
  35. Scaife AA et al (2014) Skilful long range prediction of European and North American Winters. Geophys Res Lett 41:2514–2519.  https://doi.org/10.1002/2014GL059637 CrossRefGoogle Scholar
  36. Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315(5818):1533–1536.  https://doi.org/10.1126/science.1139426 CrossRefGoogle Scholar
  37. Srokosz M, Baringer M, Bryden H, Cunningham S, Delworth T, Lozier S, Marotzke J, Sutton R (2012) Past, present, and future changes in the Atlantic meridional overturning circulation. Bull Am Meteorol Soc 93(11):1663–1676.  https://doi.org/10.1175/BAMS-D-11-00151.1 CrossRefGoogle Scholar
  38. Straneo F et al (2010) Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nat Geosci 3(3):182–186.  https://doi.org/10.1038/ngeo764 CrossRefGoogle Scholar
  39. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Amer Meteor Soc 93:485–498.  https://doi.org/10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  40. Wang X, Li J, Sun C, Liu T (2017) NAO and its relationship with the Northern Hemisphere mean surface temperature in CMIP5 simulations. J Geophys Res Atmos, 122(8), 4202–4227.  https://doi.org/10.1002/2016JD025979 CrossRefGoogle Scholar
  41. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv Adapt Data Anal 1(1):1–41.  https://doi.org/10.1142/S1793536909000047 CrossRefGoogle Scholar
  42. Xu X, Hurlburt HE, Schmitz WJ, Zantopp RJ, Fischer J, Hogan PJ (2013) On the currents and transports connected with the Atlantic meridional overturning circulation in the subpolar North Atlantic. J Geophys Res Oceans 118:502–516.  https://doi.org/10.1002/jgrc.20065 CrossRefGoogle Scholar
  43. Xu X, Chassignet EP, Johns WE, Schmitz WJ, Metzger EJ (2014) Intraseasonal to interannual variability of the Atlantic meridional overturning circulation from eddy-resolving simulations and observations. J Geophys Res Oceans.  https://doi.org/10.1002/2014JC009994 CrossRefGoogle Scholar
  44. Yan X, Zhang R, Knutson TR (2018) Underestimated AMOC variability and implications for AMV and predictability in CMIP models. Geophys Res Lett 45:4319–4328.  https://doi.org/10.1029/2018GL077378 CrossRefGoogle Scholar
  45. Yang J (2015) Local and remote wind stress forcing of the seasonal variability of the Atlantic Meridional Overturning Circulation (AMOC) transport at 26.5° N. J Geophys Res Oceans 120(4):2488–2503.  https://doi.org/10.1002/2014JC010317 CrossRefGoogle Scholar
  46. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett.  https://doi.org/10.1029/2006GL026267 CrossRefGoogle Scholar
  47. Zhang L, Wang C (2013) Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J Geophys Res Oceans 118:5772–5791.  https://doi.org/10.1002/jgrc.20390 CrossRefGoogle Scholar
  48. Zhang R, Sutton R, Danabasoglu G, Delworth TL, Kim WM, Robson J, Yeager SG (2016) Comment on “The Atlantic Multidecadal Oscillation without a role for ocean circulation”. Science 352:1527.  https://doi.org/10.1126/science.aaf1660 CrossRefGoogle Scholar
  49. Zhao J, Johns WE (2014) Wind-forced interannual variability of the Atlantic meridional overturning circulation at 26.5°N. J Geophys Res Oceans 119:2403–2419.  https://doi.org/10.1002/2013JC009407 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Ocean-Atmospheric Prediction Studies (COAPS)Florida State University (FSU)TallahasseeUSA

Personalised recommendations