Advertisement

A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean

  • Erika CoppolaEmail author
  • Stefan SobolowskiEmail author
  • E. Pichelli
  • F. Raffaele
  • B. Ahrens
  • I. Anders
  • N. Ban
  • S. Bastin
  • M. Belda
  • D. Belusic
  • A. Caldas-Alvarez
  • R. M. Cardoso
  • S. Davolio
  • A. Dobler
  • J. Fernandez
  • L. Fita
  • Q. Fumiere
  • F. Giorgi
  • K. Goergen
  • I. Güttler
  • T. Halenka
  • D. Heinzeller
  • Ø. Hodnebrog
  • D. Jacob
  • S. Kartsios
  • E. Katragkou
  • E. Kendon
  • S. Khodayar
  • H. Kunstmann
  • S. Knist
  • A. Lavín-Gullón
  • P. Lind
  • T. Lorenz
  • D. Maraun
  • L. Marelle
  • E. van Meijgaard
  • J. Milovac
  • G. Myhre
  • H.-J. Panitz
  • M. Piazza
  • M. Raffa
  • T. Raub
  • B. Rockel
  • C. Schär
  • K. Sieck
  • P. M. M. Soares
  • S. Somot
  • L. Srnec
  • P. Stocchi
  • M. H. Tölle
  • H. Truhetz
  • R. Vautard
  • H. de Vries
  • K. Warrach-Sagi
Article

Abstract

A recently launched project under the auspices of the World Climate Research Program’s (WCRP) Coordinated Regional Downscaling Experiments Flagship Pilot Studies program (CORDEX-FPS) is presented. This initiative aims to build first-of-its-kind ensemble climate experiments of convection permitting models to investigate present and future convective processes and related extremes over Europe and the Mediterranean. In this manuscript the rationale, scientific aims and approaches are presented along with some preliminary results from the testing phase of the project. Three test cases were selected in order to obtain a first look at the ensemble performance. The test cases covered a summertime extreme precipitation event over Austria, a fall Foehn event over the Swiss Alps and an intensively documented fall event along the Mediterranean coast. The test cases were run in both “weather-like” (WL, initialized just before the event in question) and “climate” (CM, initialized 1 month before the event) modes. Ensembles of 18–21 members, representing six different modeling systems with different physics and modelling chain options, was generated for the test cases (27 modeling teams have committed to perform the longer climate simulations). Results indicate that, when run in WL mode, the ensemble captures all three events quite well with ensemble correlation skill scores of 0.67, 0.82 and 0.91. They suggest that the more the event is driven by large-scale conditions, the closer the agreement between the ensemble members. Even in climate mode the large-scale driven events over the Swiss Alps and the Mediterranean coasts are still captured (ensemble correlation skill scores of 0.90 and 0.62, respectively), but the inter-model spread increases as expected. In the case over Mediterranean the effects of local-scale interactions between flow and orography and land–ocean contrasts are readily apparent. However, there is a much larger, though not surprising, increase in the spread for the Austrian event, which was weakly forced by the large-scale flow. Though the ensemble correlation skill score is still quite high (0.80). The preliminary results illustrate both the promise and the challenges that convection permitting modeling faces and make a strong argument for an ensemble-based approach to investigating high impact convective processes.

Keywords

Convection-permitting Ensemble models Climate applications 

Notes

Acknowledgements

IG and LS have been supported by the Croatian Science Foundation (HrZZ) project CARE (no. 2831). JF acknowledges support by the Spanish R + D programme through MINECO/FEDER co-funded project INSIGNIA (CGL2016-79210-R). AL-G is supported by the Spanish government though grant BES-2016-078158 and MINECO/FEDER co-funded project MULTI-SDM (CGL2015-66583-R). UCAN simulations have been carried out on the Altamira Supercomputer at the Instituto de Física de Cantabria (IFCA, CSIC-UC), member of the Spanish Supercomputing Network. Computational resources were partly made available by the German Climate Computing Center (DKRZ) through support from the BMBF. JM and KW-S gratefully acknowledge the support by the German Science Foundation (DFG) through project FOR 1695. UHOH simulations were carried out at the supercomputing center HLRS in Stuttgart, Germany. DM, MP, and HT gratefully acknowledge the support received via the Austrian Science Fund (FWF) project NHCM-2 (no. P24758-N29) and the projects HighEnd:Extremes and EASICLIM, funded by the Austrian Climate Research Programme (ACRP) of the Klima- und Energiefonds (nos. KR13AC6K10981 and KR16AC0K13160, respectively). DM, MP and HT are also thankful for the computational resources received the Vienna Scientific Cluster (VSC). KG, SK, HT and MP gratefully acknowledge the computing time granted by the John von Neumann Institute for Computing (NIC) and provided on the supercomputer JURECA at Jülich Supercomputing Centre (JSC) through grant hka19. DH gratefully acknowledges the Gauss Centre for Supercomputing e.V. (http://www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer JUQUEEN at Jülich Supercomputing Centre (JSC) through grant hka19. SS and TL acknowledge the support of NOTUR project no. NN9280K and the Research Council of Norway and its basic institute support of their strategic project on Climate Services. The authors gratefully acknowledge the Austrian Central Department for Meteorology and Geodynamics (ZAMG) for providing analysis fields of the Integrated Nowcasting through Comprehensive Analysis (INCA) system. IPSL’s work was granted access to the HPC resources of TGCC under the allocations 2017-A0010106313 and 2017-A0030106877 made by GENCI. RMC and PMMS gratefully acknowledge the support of the SOLAR project (PTDC/GEOMET/7078/2014) financed by the Portuguese Foundation for Science and Technology. QF and SS acknowledge the support of the Meteo-France computing center and warmly thank Antoinette Alias and Michel Déqué for their contributions. EJ Kendon gratefully acknowledges funding from the Joint Department of Energy and Climate Change (DECC) and Department for Environment Food and Rural Affairs (Defra) Met Office Hadley Centre Climate Programme (GA01101). S. Khodayar research is supported by the Bundesministerium für Bildung und Forschung (BMBF; German Federal Ministry of Education and Research). EK and SK acknowledge the support of the Greek Research and Technology Network (GRNET) High Performance Computing (HPC) infrastructure for providing the computational resources of AUTH-simulations and the AUTH Scientific Computing Center for technical support. TH and MB (CUNI) acknowledge the support of the IT4Innovations—National Supercomputer Centre of the Czech Republic providing the computational resources for the CUNI simulations and the support of Ministry of Education, Youth and Sports of the Czech Republic for funding the participation in Euro-CORDEX activities via the scheme INTER-TRANSFER under the Grant no. LTT17007. LM, GM and ØH acknowledge supercomputer facilities provided by NOTUR, and funding from the Research Council of Norway through the SUPER (Grant no. 250573) and HYPRE (Grant no. 243942) projects. HCLIM-KNMI simulations were supported by ECMWF (computing time through special project SPNLSTER) and the Dutch Ministry of Infrastructure and the Environment. HdV and EvM like to thank Bert van Ulft from KNMI for carrying out the Harmonie simulations. ICTP thanks the CINECA super computer center for the HPC facilities used for those simulations. The authors also wish to thank MeteoGroup Switzerland for providing observational data for the Foehn test case, Meteo-France and the HyMeX program (sponsored by Grants MISTRALS/HyMeX and ANR-11-BS56-0005 IODA-MED project) for supplying the data for HyMeX-IOP16 case, the Wegener Center (especially Jürgen Fuchsberger) for providing WegenerNet data for the Austria case.

References

  1. Argüeso D, Evans JP, Fita L, Bormann KJ (2014) Temperature response to future urbanization and climate change. Clim Dyn 42(7–8):2183–2199CrossRefGoogle Scholar
  2. Ban N, Schmidli J, Schär C (2014) Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J Geophys Res Atmos 119:7889–7907.  https://doi.org/10.1002/2014JD021478 CrossRefGoogle Scholar
  3. Ban N, Schmidli J, Schär C (2015) Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys Res Lett 42:1165–1172.  https://doi.org/10.1002/2014GL062588 CrossRefGoogle Scholar
  4. Beaulant A-L, Joly B, Nuissier O, Somot S, Ducrocq V, Joly A, Sevault F, Deque M, Ricard D (2011) Statistico-dynamical downscaling for Mediterranean heavy precipitation. Q J R Meteorol Soc 137:736–748CrossRefGoogle Scholar
  5. Beniston M (2006) August 2005 intense rainfall event in Switzerland: Not necessarily an analog for strong convective events in a greenhouse climate. Geophys Res Lett 33(5):L05701.  https://doi.org/10.1029/2005GL025573 CrossRefGoogle Scholar
  6. Benoit R, Schär C, Binder P, Chamberland S, Davies HC, Desgagné M, Girard C, Keil C, Kouwen N, Lu ̈thi D, Maric D, Mu ̈ller E, Pellerin P, Schmidli J, Schubiger F, Schwierz C, Sprenger M, Walser A, Willemse S, Yu W, Zala E (2002) The real-time ultra finescale forecast support during the special observing period of the MAP. Bull Amer Meteor Soc 83:85–109CrossRefGoogle Scholar
  7. Bony S, Stevens B, Frierson DM, Jakob C, Kageyama M, Pincus R, Shepherd TG, Sherwood SC, Siebesma AP, Sobel AH, Watanabe M (2015) Clouds, circulation and climate sensitivity. Nat Geosci 8(4):261–268CrossRefGoogle Scholar
  8. Brisson E, Van Weverberg K, Demuzere M, Devis A, Saeed S, Stengel M, van Lipzig NP (2016) How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics? Clim Dyn 47(9–10):3043–3061CrossRefGoogle Scholar
  9. Carvalho LM, Jones C, Liebmann B (2002) Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J Clim 15(17):2377–2394CrossRefGoogle Scholar
  10. Chen SS et al (2016) Aircraft observations of dry air, the ITCZ, convective cloud systems, and cold pools in MJO during DYNAMO. Bull Am Meteorol Soc 97:405–423.  https://doi.org/10.1175/BAMS-D-13-00196.1 CrossRefGoogle Scholar
  11. Davis C, Brown B, Bullock R (2006) Object-based verification of precipitation forecasts: part II. Application to convective rain systems. Mon Weather Rev 134(7):1785–1795.  https://doi.org/10.1175/MWR3146.1 CrossRefGoogle Scholar
  12. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Bechtold P et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  13. Delrieu G, Wijbrans A, Boudevillain B, Faure D, Bonnifait L, Kirstetter PE (2014) Geostatistical radar–raingauge merging: a novel method for the quantification of rain estimation accuracy. Adv Water Resour 71:110–124CrossRefGoogle Scholar
  14. Déqué M, Alias A, Somot S, Nuissier O (2016) Climate change and extreme precipitation: the response by a convection-resolving model. Research activities in atmospheric and oceanic modelling. CAS/JSC Working group on numerical experimentation. Report No. 46. http://www.wcrp-climate.org/WGNE/blue_book.html. Accessed 5 Dec 2017
  15. Deser C, Phillips A, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38(3–4):527–546CrossRefGoogle Scholar
  16. Deser C, Phillips AS, Alexander MA, Smoliak BV (2014) Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J Clim 27(6):2271–2296CrossRefGoogle Scholar
  17. Dirmeyer PA, Cash BA, Kinter JL, Jung T, Marx L, Satoh M, Stan C, Tomita H, Towers P, Wedi N, Achuthavarier D (2012) Simulating the diurnal cycle of rainfall in global climate models: Resolution versus parameterization. Clim Dyn 39(1–2):399–418CrossRefGoogle Scholar
  18. Done J, Davis CA, Weisman M (2004) The next generation of NWP: Explicit forecasts of convection using the Weather Research And Forecasting (WRF) model. Atmos Sci Lett 5(6):10–117CrossRefGoogle Scholar
  19. Ducrocq V, Ricard D, Lafore JP, Orain F (2002) Storm-scale numerical rainfall prediction for five precipitating events over France: on the importance of the initial humidity field. Weather Forecast 17:1236–1256CrossRefGoogle Scholar
  20. Ducrocq V, Nuissier O, Ricard D, Lebeaupin C, Thouvenin T (2008) A numerical study of three catastrophic precipitating events over southern france. ii: Mesoscale triggering and stationarity factors. Q J R Meteorol Soc 134(630):131–145CrossRefGoogle Scholar
  21. Ducrocq V, Braud I, Davolio S, Ferretti R, Flamant C, Jansa A, Kalthoff N, Richard E, Taupier-Letage I, Ayral PA, Belamari S, Berne A, Borga M, Boudevillain B, Bock O, Boichard JL, Bouin MN, Bousquet O, Bouvier C, Chiggiato J, Cimini D, Corsmeier U, Coppola L, Cocquerez P, Defer E, Drobinski P, Dufournet Y, Fourrie N, Gourley JJ, Labatut L, Lambert D, Le Coz J, Marzano FS, Molinie G, Montani A, Nord G, Nuret M, Ramage K, Rison B, Roussot O, Said F, Schwarzenboeck A, Testor P, Van Baelen J, Vincendon B, Aran M (2014) HyMeX-SOP1: the field campaign dedicated to heavy precipitation and flash flooding in the northwestern Mediterranean. Bull Am Meteor Soc 95(7):1083–1100CrossRefGoogle Scholar
  22. Duffourg F, Nuissier O, Ducrocq V, Flamant C, Chazette P, Delanoë J, Doerenbecher A, Fourrié N, Di Girolamo P, Lac C et al (2016) Offshore deep convection initiation and maintenance during the hymex iop 16a heavy precipitation event. Q J R Meteorol Soc 142(S1):259–274CrossRefGoogle Scholar
  23. Fosser G, Khodayar S, Berg P (2014) Benefit of convection permitting climate model simulations in the representation of convective precipitation. Clim Dyn 44(1– 2):45–60Google Scholar
  24. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183Google Scholar
  25. Giorgi F,C, Torma E, Coppola N, Ban C, Schar, Somot S (2016) Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. Nat Geosci 9:584–589CrossRefGoogle Scholar
  26. Godina R, Müller G (2009) Das Hochwasser in Österreich vom 22. bis 30 Juni, 2009—Beschreibung der hydrologischen Situation (in German), Report, pp 21, Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management (BMLFUW), Abt. VII/3., Vienna, Austria. https://www.bmlfuw.gv.at/wasser/wasser-oesterreich/wasserkreislauf/hydrograph_charakt_extrema/Hochwasser-Juni2009.html. Accessed 5 Dec 2017
  27. Grazzini F (2007) Predictability of a large-scale flow conducive to extreme precipitation over the western Alps. Met Atm Phys 95:123–138CrossRefGoogle Scholar
  28. Grell GA, Schade L, Knoche R, Pfeiffer A, Egger J (2000) Nonhydrostatic climate simulations of precipitation over complex terrain. J Geophys Res 105(D24):29595–29608CrossRefGoogle Scholar
  29. Gutowski WJ Jr, Giorgi F, Timbal B, Frigon A, Jacob D, Kang HS, Raghavan K, Lee B, Lennard C, Nikulin G, O’Rourke E, Rixen M, Solman S, Stephenson T, Tangang F (2016) WCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6. Geosci Model Dev 9:4087–4095.  https://doi.org/10.5194/gmd-9-4087-2016 CrossRefGoogle Scholar
  30. Haiden, Pistotnik G (2009) Intensity-dependent parameterization of elevation effects in precipitation analysis. Adv Geosci 20:33–38CrossRefGoogle Scholar
  31. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteor Soc 90(8):1095–1107CrossRefGoogle Scholar
  32. Heinzeller D, Junkermann W, Kunstmann H (2016) Anthropogenic aerosol emissions and rainfall decline in Southwestern Australia: coincidence or causality? J Clim 29:8471–8493.  https://doi.org/10.1175/JCLI-D-16-0082.1 CrossRefGoogle Scholar
  33. Hohenegger C, Brockhaus P, Bretherton CS, Schär C (2009) The soil moisture-precipitation feedback in simulations with explicit and parameterized convection. J Clim 22(19):5003–5020CrossRefGoogle Scholar
  34. Holloway CE, Neelin JD (2009) Moisture vertical structure, column water vapor, and tropical deep convection. J Atmos Sci 66:1665–1683CrossRefGoogle Scholar
  35. Jakob M, Weatherly H (2003) A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British Columbia. Geomorphology 54(3):137–156CrossRefGoogle Scholar
  36. Kendon EJ, Roberts NN, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high-resolution regional climate model. J Clim 25:5791–5806.  https://doi.org/10.1175/JCLI-D-11-00562.1 CrossRefGoogle Scholar
  37. Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior CA (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Change 4(7):570–576CrossRefGoogle Scholar
  38. Khairoutdinov MF, Randall D (2006) High-resolution simulation of shallow to deep convection transition over land. J Atmos Sci 63:3421–3436CrossRefGoogle Scholar
  39. Khodayar S, Fosser G, Segolene B, Davolio S, Drobinski P, Ducrocq V, Ferretti R, Nuret M, Pichelli E, Richard E (2016) A seamless weather-climate multi-model intercomparison on the representation of high impact weather in the Western Mediterranean: HyMeX IOP12. Q J R Meteorol Soc 142:433–452.  https://doi.org/10.1002/qj.2700 CrossRefGoogle Scholar
  40. Klein SA, Zhang Y, Zelinka MD, Pincus R, Boyle J, Gleckler PJ (2013) Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J Geophys Res Atmos 118:1329–1342.  https://doi.org/10.1002/jgrd.50141 CrossRefGoogle Scholar
  41. Kramer M, Heinzeller D, Hartmann H, van den Berg W, Steeneveld GJ (2017) Numerical weather prediction in the grey zone using a global variable resolution mesh and scale-aware convection parameterisation using MPAS. Clim Dyn (in review)  Google Scholar
  42. Landelius T, Dahlgren P, Gollvik S, Jansson A, Olsson E (2016) A high-resolution regional reanalysis for Europe. Part 2: 2D analysis of surface temperature, precipitation and wind. Q J R Meteorol Soc 142(698):2132–2142.  https://doi.org/10.1002/qj.2813 CrossRefGoogle Scholar
  43. Lenderink G, van Meijgaard E (2008) Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat Geosci 1(8):511–514.  https://doi.org/10.1038/ngeo262 CrossRefGoogle Scholar
  44. Llasat MC, Llasat-Botija M, Petrucci O, Pasqua AA, Rosselló J, Vinet F, Boissier L (2013) Towards a database on societal impact of Mediterranean floods within the framework of the HYMEX project. Nat Hazards Earth Syst Sci 13(5):1337–1350CrossRefGoogle Scholar
  45. Maraun D, Shepherd TG, Widmann M, Zappa G, Walton D, Gutiérrez JM, Hagemann S, Richter I, Soares PM, Hall A, Mearns LO (2017) Towards process-informed bias correction of climate change simulations. Nat Clim Change 7(11):764–773CrossRefGoogle Scholar
  46. Martinet M, Nuissier O, Duffourg F, Ducrocq V, Ricard D (2017) Fine-scale numerical analysis of the sensitivity of the hymex iop16a heavy precipitating event to the turbulent mixing length parameterization. Q J R Meteorol Soc.  https://doi.org/10.1002/qj.3167 CrossRefGoogle Scholar
  47. Mass CF, Ovens D, Westrick K, Colle BA (2002) Does increasing horizontal resolution produce more skillful forecasts? Bull Am Meteor Soc 83(3):407–430CrossRefGoogle Scholar
  48. Meredith EP, Semenov VA, Maraun D, Park W, Chernokulsky AV (2015) Crucial role of Black Sea warming in amplifying the 2012 Krymsk precipitation extreme. Nat Geosci 8:615–619.  https://doi.org/10.1038/NGEO2483 CrossRefGoogle Scholar
  49. Milovac J, Warrach-Sagi K, Behrendt A, Späth F, Ingwersen J, Wulfmeyer V (2016) Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption lidar measurements. J Geophys Res Atmos 121:624–649.  https://doi.org/10.1002/2015JD023927 CrossRefGoogle Scholar
  50. Pontoppidan M, Reuder J, Mayer S, Kolstad EW (2017) Downscaling an intense precipitation event in complex terrain: the importance of high grid resolution. Tellus A: Dyn Meteorol Oceanogr 69(1):1271561CrossRefGoogle Scholar
  51. Prein A, Gobiet A, Suklitsch M, Truhetz H, Awan N, Keuler K, Georgievski G (2013a) Added value of convection permitting seasonal simulations. Clim Dyn 41(9–10):2655–2677CrossRefGoogle Scholar
  52. Prein AF, Holland GJ, Rasmussen RM, Done J, Ikeda K, Clark MP, Liu CH (2013b) Importance of regional climate model grid spacing for the simulation of heavy precipitation in the Colorado headwaters. J Clim 26(13):4848–4857CrossRefGoogle Scholar
  53. Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tölle M, Gutjahr O, Feser F et al (2015) A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev Geophys 53:323–361CrossRefGoogle Scholar
  54. Prein AF, Liu C, Ikeda K, Trier SB, Rasmussen RM, Holland GJ, Clark MP (2017) Increased rainfall volume from future convective storms in the US. Nat Clim Change 7(12):880CrossRefGoogle Scholar
  55. Rasmussen R et al (2014) Climate change impacts on the water balance of the Colorado headwaters: High-resolution regional climate model simulations. J Hydrometeorol 15:1091–1116.  https://doi.org/10.1175/JHM-D-13-0118.1 CrossRefGoogle Scholar
  56. Ribes A, Soulivanh T, Vautard R, Dubuisson B, Somot S, Colin J, Planton S, Soubeyroux J-M (2018) Observed increase in extreme daily rainfall in the French Mediterranean. Clim Dyn.  https://doi.org/10.1007/s00382-018-4179-2 CrossRefGoogle Scholar
  57. Scherrer SC, Begert M, Croci-Maspoli M, Appenzeller C (2016) Long series of Swiss seasonal precipitation: regionalization, trends and influence of large-scale flow. Int J Climatol.  https://doi.org/10.1002/joc.4584 (in press)CrossRefGoogle Scholar
  58. Schwitalla T, Bauer H-S, Wulfmeyer V, Warrach-Sagi K (2017) Continuous high-resolution midlatitude-belt simulations for July–August 2013 with WRF. Geosci Model Dev 10:2031–2055.  https://doi.org/10.5194/gmd-10-2031-2017 CrossRefGoogle Scholar
  59. Shepherd TG (2014) Atmospheric circulation as a source of uncertainty in climate change projections. Nat Geosci 7(10):703–708CrossRefGoogle Scholar
  60. Sherwood SC, Bony S, Dufresne JL (2014) Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505(7481):37–42CrossRefGoogle Scholar
  61. Siebesma AP, Soares P, Teixeira J (2007) A combined eddy diffusivity mass-flux approach for the convective boundary layer. J Atmos Sci 64:1230–1248CrossRefGoogle Scholar
  62. Soares PMM, Miranda PMA, Siebesma AP, Teixeira J (2004) An eddydiffusivity/mass-flux parametrization for dry and shallow cumulus convection. Q J R Meteorol Soc 130:3365–3384CrossRefGoogle Scholar
  63. Stevens B, Bony S (2013) What are climate models missing? Science 340(6136):1053–1054CrossRefGoogle Scholar
  64. Stucki P, Brönnimann S, Martius O, Welker C, Rickli R, Dierer S, Bresch DN, Compo GP, Sardeshmukh PD (2015) Dynamical downscaling and loss modeling for the reconstruction of historical weather extremes and their impacts: a severe Foehn storm in 1925. Bull Am Meteorol Soc 96(8):1233–1241CrossRefGoogle Scholar
  65. Tabary P, Dupuy P, Lhenaff G, Gueguen C, Moulin L, Laurantin O, Merlier C, Soubeyroux JM (2012) A 10-year (1997–2006) reanalysis of quantitative precipitation estimation over France: methodology and first results. IAHS-AISH 351:255–260Google Scholar
  66. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc Lond A Math Phys Eng Sci 365(1857):2053–2075CrossRefGoogle Scholar
  67. Teixeira J et al (2008) Parameterization of the atmospheric boundary layer. Bull Am Meteorol Soc 89(4):453–458.  https://doi.org/10.1175/BAMS-89-4-453 CrossRefGoogle Scholar
  68. Teixeira J, Cardoso S, Bonazzola M, Cole J, Del Genio A, DeMott C, Franklin C, Hannay C, Jakob C, Jiao Y, Karlsson J, Kitagawa H, Köhler M, Kuwano-Yoshida A, LeDrian C, Li J, Lock A, Miller MJ, Marquet P, Martins J, Mechoso CR, van Meijgaard E, Meinke I, Miranda PMA, Mironov D, Neggers R, Pan HL, Randall DA, Rasch PJ, Rockel B, Rossow WB, Ritter B, Siebesma AP, Soares PMM, Turk FJ, Vaillancourt PA, Von Engeln A, Zhao M (2011) Tropical and sub-tropical cloud transitions in weather and climate prediction models: The GCSS/WGNE Pacific Cross-section Intercomparison (GPCI). J Clim 24:5223–5256.  https://doi.org/10.1175/2011JCLI3672.1 CrossRefGoogle Scholar
  69. Tölle MH, Gutjahr O, Thiele J, Busch G (2014) Increasing bioenergy production on arable land: does the regional and local climate respond? Germany as a case study. J Geophys Res Atmos 119(6):2711–2724.  https://doi.org/10.1002/2013JD020877 CrossRefGoogle Scholar
  70. Tölle MH, Schefczyk L, Gutjahr O (2017) Scale dependency of regional climate modeling of current and future climate extremes in Germany. Theor Appl Climatol.  https://doi.org/10.1007/s00704-017-2303-6 CrossRefGoogle Scholar
  71. Vautard R, van Oldenborgh G-J, Thao S, Dubuisson B, Lenderink G, Ribes A, Planton S, Soubeyroux J-M, Yiou P (2015) Extreme fall precipitations in the Cévennes mountains. On “explaining extreme events of 2014 from a climate perspective”. Bull Am Meteorol Soc Suppl 96:S56–S60CrossRefGoogle Scholar
  72. Warrach-Sagi K, Schwitalla T, Wulfmeyer V, Bauer H-S (2013) Evaluation of a climate simulation in Europe based on the WRF-NOAH model system: precipitation in Germany. Clim Dyn 41:755–774CrossRefGoogle Scholar
  73. Webb MJ, Lock AP, Bretherton CS, Bony S, Cole JNS, Idelkadi A, Kang SM, Koshiro T, Kawai H, Ogura T, Roehrig R, Shin Y, Mauritsen T, Sherwood SC, Vial J, Watanabe M, Woelfle MD, Zhao M (2015) The impact of parametrized convection on cloud feedback. Philos Trans R Soc A.  https://doi.org/10.1098/rsta.2014.0414 CrossRefGoogle Scholar
  74. Weisman ML, Skamarock W, Klemp JB (1997) The resolution dependence of explicitly modeled convective systems. Mon Weather Rev 125:527–548,  https://doi.org/10.1175/1520-0493(1997)125%3C0527:TRDOEM%3E2.0.CO;2 CrossRefGoogle Scholar
  75. Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, Kendon EJ, Lenderink G, Roberts NM (2014) Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys 52:522–555.  https://doi.org/10.1002/2014RG000464 CrossRefGoogle Scholar
  76. Wu L (2009) Comparison of atmospheric infrared sounder temperature and relative humidity profiles with NASA African Monsoon multidisciplinary analyses (NAMMA) dropsonde observations. J Geophys Res 114:D19205.  https://doi.org/10.1029/2009JD012083 CrossRefGoogle Scholar
  77. Wüest M, Frei C, Altenhoff A, Hagen M, Litschi M, Schär C (2010) A gridded hourly precipitation dataset for Switzerland using rain-gauge analysis and radar-based disaggregation. Int J Climatol 30:1764–1775.  https://doi.org/10.1002/joc.2025 CrossRefGoogle Scholar
  78. Yano JI, Soares PMM, Köhler M, Deluca A (2015) The convective parameterization problem: breadth and depth. Bull Am Meteor Soc 96(8):ES127–ES130CrossRefGoogle Scholar
  79. Yano JI, Ziemiański MZ, Cullen M, Termonia P, Onvlee J, Bengtsson L, Carrassi A, Davy R, Deluca A, Gray SL, Homar V (2017) Scientific challenges of convective-scale numerical weather prediction. Bull Am Meteorol Soc 99(4):699–710. http://hdl.handle.net/1854/LU-8554921 CrossRefGoogle Scholar
  80. Zappa G, Shepherd TG (2017) Storylines of atmospheric circulation change for european regional climate impact assessment. Am Met Soc.  https://doi.org/10.1175/JCLI-D-16-0807.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Erika Coppola
    • 1
    Email author return OK on get
  • Stefan Sobolowski
    • 2
    Email author
  • E. Pichelli
    • 1
  • F. Raffaele
    • 1
  • B. Ahrens
    • 3
  • I. Anders
    • 4
  • N. Ban
    • 5
  • S. Bastin
    • 6
  • M. Belda
    • 7
  • D. Belusic
    • 8
  • A. Caldas-Alvarez
    • 9
  • R. M. Cardoso
    • 10
  • S. Davolio
    • 11
  • A. Dobler
    • 12
  • J. Fernandez
    • 13
  • L. Fita
    • 14
  • Q. Fumiere
    • 15
  • F. Giorgi
    • 1
  • K. Goergen
    • 16
    • 17
  • I. Güttler
    • 18
  • T. Halenka
    • 7
  • D. Heinzeller
    • 19
    • 20
  • Ø. Hodnebrog
    • 21
  • D. Jacob
    • 22
  • S. Kartsios
    • 23
  • E. Katragkou
    • 23
  • E. Kendon
    • 24
  • S. Khodayar
    • 9
  • H. Kunstmann
    • 19
    • 25
  • S. Knist
    • 17
    • 26
  • A. Lavín-Gullón
    • 27
  • P. Lind
    • 8
  • T. Lorenz
    • 2
  • D. Maraun
    • 28
  • L. Marelle
    • 21
  • E. van Meijgaard
    • 29
  • J. Milovac
    • 30
  • G. Myhre
    • 21
  • H.-J. Panitz
    • 9
  • M. Piazza
    • 28
  • M. Raffa
    • 31
  • T. Raub
    • 22
  • B. Rockel
    • 32
  • C. Schär
    • 5
  • K. Sieck
    • 22
  • P. M. M. Soares
    • 10
  • S. Somot
    • 15
  • L. Srnec
    • 18
  • P. Stocchi
    • 11
  • M. H. Tölle
    • 33
  • H. Truhetz
    • 28
  • R. Vautard
    • 6
  • H. de Vries
    • 29
  • K. Warrach-Sagi
    • 30
  1. 1.International Centre for Theoretical Physics (International Center for Theoretical Physics (ICTP))TriesteItaly
  2. 2.Uni Research, The Bjerknes Centre for Climate ResearchBergenNorway
  3. 3.Goethe-Universitaet Frankfurt a.M. Frankfurt/MainFrankfurtGermany
  4. 4.ZAMG (Central Institute for Meteorology and Geodynamics)ViennaAustria
  5. 5.Institute for Atmospheric and Climate ScienceETH ZürichZurichSwitzerland
  6. 6.Institut Pierre Simon Laplace (IPSL), LATMOS, UVSQ, UPMC, CNRSGuyancourtFrance
  7. 7.Department of Atmospheric Physics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  8. 8.Swedish Meteorological and Hydrological Institute (SMHI)NorrköpingSweden
  9. 9.Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research-Troposphere ResearchKarlsruheGermany
  10. 10.Instituto Dom Luiz, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  11. 11.Institute of Atmospheric Sciences and ClimateNational Research Council of Italy, CNR-ISACBolognaItaly
  12. 12.The Norwegian Meteorological InstituteOsloNorway
  13. 13.Meteorology Group, Department of Applied Mathematics and Computer ScienceUniversidad de CantabriaSantanderSpain
  14. 14.Centro de Investigaciones del Mar y la Atmósfera (CIMA), CONICET-UBA, CNRS UMI-IFAECIBuenos AiresArgentina
  15. 15.CNRM (Centre National de Recherches Météorologiques)Université de Toulouse, Météo-France, CNRSToulouseFrance
  16. 16.Institute of Bio-and Geosciences (Agrosphere, IBG-3)Research Centre JülichJülichGermany
  17. 17.Centre for High-Performance Scientific Computing in Terrestrial SystemsGeoverbund ABC/JJülichGermany
  18. 18.Meteorological and Hydrological Service (DHMZ)ZagrebCroatia
  19. 19.Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT)Garmisch-PartenkirchenGermany
  20. 20.Earth System Research LaboratoryNational Oceanic and Atmospheric AdministrationBoulderUSA
  21. 21.Center for International Climate and Environmental Research-Oslo (CICERO)OsloNorway
  22. 22.Climate Service Center (CSC) Helmholtz-Zentrum Geesthacht HamburgHamburgGermany
  23. 23.Department of Meteorology and Climatology, School of GeologyAristotle University of ThessalonikiGreeceUK
  24. 24.Met Office Hadley CentreExeterUK
  25. 25.Institute of GeographyAugsburg UniversityAugsburgGermany
  26. 26.Meteorological InstituteUniversity of BonnBonnGermany
  27. 27.Meteorology Group, Instituto de Física de Cantabria (IFCA)CSIC-Univ. CantabriaSantanderSpain
  28. 28.Wegener Center for Climate and Global Change (WEGC)University of GrazGrazAustria
  29. 29.Royal Netherlands Meteorological Institute (KNMI)De BiltThe Netherlands
  30. 30.Institute of Physics and Meteorology (IPM)University of HohenheimStuttgartGermany
  31. 31.Euro-Mediterranean Center on Climate Change (CMCC Foundation)CapuaItaly
  32. 32.Helmholtz-Zentrum GeesthachtGeesthachtGermany
  33. 33.Department of Geography, Climatology, Climate Dynamics and Climate ChangeJustus-Liebig-University GiessenGiessenGermany

Personalised recommendations