Advertisement

Long-term memory and multifractality of downwelling longwave radiation flux at the Earth’s surface

  • V. K. Stathopoulos
  • C. MatsoukasEmail author
Article

Abstract

We study for the first time the correlation properties and the multifractality of downward longwave radiation (DLR) temporal fluctuations, using the multi-fractal detrended fluctuation analysis. Our DLR data are taken from 40 stations of the Baseline Surface Radiation Network and span more than 20 years on temporal resolutions of a few minutes. In almost all stations, two different scaling regions are defined through the emergence of a crossover at around 10 days, similarly to earlier studies of other meteorological quantities. The crossover marks the transition from a persistent, non-stationary signal on weather scales to a more weakly persistent (and sometimes anti-persistent) behavior extending in the macroweather region between 2 months and at least several years. We observe typical multifractal behavior for DLR through the investigation of the generalized Hurst exponents and singularity spectra. Generally, the multifractality strength is larger for the weather regime compared to the macroweather. We find evidence that the shape of the probability density function of the DLR anomalies contributes to the multifractality strength for macroweather. The three Western Equatorial Pacific stations exhibit markedly different characteristics, with fluctuation functions closely following 1/f noise between the scales of a few hours up to 2 months. These stations appear to be strongly affected by the ENSO. Also, their timeseries are barely long enough so that the ENSO shows as a semi-periodic signal on the large scales of their long-term memory. Their multifractality is not clearly defined and its strength is much smaller than that of the other stations.

Keywords

Multifractality Detrended fluctuation analysis Longwave flux Long-term memory 

Notes

Acknowledgements

We would like to acknowledge the BSRN for their systematic effort in providing a surface station radiation flux dataset of the highest quality.

Supplementary material

382_2018_4473_MOESM1_ESM.eps (199 kb)
Supplementary Figure S1 Histograms of $h(2)$ and $\Delta \alpha$ for DFA order $l=1$ for weather, macroweather, and all scales (eps 198 KB)
382_2018_4473_MOESM2_ESM.eps (199 kb)
Supplementary Figure S2 Histograms of $h(2)$ and $\Delta \alpha$ for DFA order $l=3$ for weather, macroweather, and all scales (eps 199 KB)

References

  1. Alvarez-Ramirez J, Alvarez J, Dagdug L, Rodriguez E, Echeverria JC (2008) Long-term memory dynamics of continental and oceanic monthly temperatures in the recent 125 years. Physica A 387:3629–3640.  https://doi.org/10.1016/j.physa.2008.02.051 CrossRefGoogle Scholar
  2. Ashkenazy Y, Baker DR, Gildor H, Havlin S (2003) Nonlinearity and multifractality of climate change in the past 420,000 years. Geophys Res Lett 30(22):2146.  https://doi.org/10.1029/2003gl018099 CrossRefGoogle Scholar
  3. Bashan A, Bartsch R, Kantelhardt JW, Havlin S (2008) Comparison of detrending methods for fluctuation analysis. Physica A 387:2080–5090CrossRefGoogle Scholar
  4. Blender R, Fraedrich K, Hunt B (2006) Millennial climate variability: GCM-simulation and greenland ice cores. Geophys Res Lett 33(L04):710.  https://doi.org/10.1029/2005GL024919 CrossRefGoogle Scholar
  5. Buldyrev SV, Goldberger AL, Havlin S, Mantegna RN, Matsa ME, Peng CK, Simons M, Stanley HE (1995) Long-range correlation prperties of coding and noncoding DNA sequences: GenBank analysis. Phys Rev E 51(5):5084–5091.  https://doi.org/10.1103/PhysRevE.51.5084 CrossRefGoogle Scholar
  6. Chen Z, Ivanov PC, Hu K, Stanley HE (2002) Effect of nonstationarities on detrended fluctuation analysis. Phys Rev E 65(041):107.  https://doi.org/10.1103/PhysRevE.65.041107 CrossRefGoogle Scholar
  7. Feder J (1988) Fractals (physics of solids and liquids). Springer, New YorkGoogle Scholar
  8. Fraedrich K, Blender R (2003) Scaling of atmosphere and ocean temperature correlations in observations and climate models. Phys Rev Lett 90(10):108501.  https://doi.org/10.1103/PhysRevLett.90.108501 CrossRefGoogle Scholar
  9. Fraedrich K, Blender R, Zhu X (2009) Continuum climate variability: Long-term memory, scaling, and 1/f-noise. Int J Mod Phys B 23(28–29):5403–5416.  https://doi.org/10.1142/S0217979209063729 (Workshop on modelling geophysical systems by statistical mechanics methods, Erice, Apr 27–May 02, 2008)CrossRefGoogle Scholar
  10. Govindan RB, Vyushin D, Bunde A, Brenner S, Havlin S, Schellnhuber HJ (2002) Global climate models violate scaling of the observed atmospheric variability. Phys Rev Lett 89(2):028501.  https://doi.org/10.1103/PhysRevLett.89.028501 CrossRefGoogle Scholar
  11. Grech D, Pamuła G (2013) On the multifractal effects generated by monofractal signals. Physica A 392(23):5845–5864.  https://doi.org/10.1016/j.physa.2013.07.045 CrossRefGoogle Scholar
  12. Gulich D, Zunino L (2012) The effects of observational correlated noises on multifractal detrended fluctuation analysis. Physica A 391(16):4100–4110.  https://doi.org/10.1016/j.physa.2012.04.001 CrossRefGoogle Scholar
  13. Harrouni S, Guessoum A (2009) Using fractal dimension to quantify long-range persistence in global solar radiation. Chaos Soliton Fract 41:1520–1530.  https://doi.org/10.1016/j.chaos.2008.06.016 CrossRefGoogle Scholar
  14. Hatzianastassiou N, Matsoukas C, Fotiadi A, Pavlakis KG, Drakakis E, Hatzidimitriou D, Vardavas I (2005) Global distribution of earth’s surface shortwave radiation budget. Atmos Chem Phys 5(10):2847–2867.  https://doi.org/10.5194/acp-5-2847-2005, http://www.atmos-chem-phys.net/5/2847/2005 CrossRefGoogle Scholar
  15. Hu K, Ivanov PC, Chen Z, Carpena P, Stanley HE (2001) Effect of trends on detrended fluctuation analysis. Phys Rev E 64(011):114.  https://doi.org/10.1103/PhysRevE.64.011114 CrossRefGoogle Scholar
  16. Ihlen EAF (2012) Introduction to multifractal detrended fluctuation analysis in Matlab. Front Physiol 3:141.  https://doi.org/10.3389/fphys.2012.00141 CrossRefGoogle Scholar
  17. Kantelhardt JW, Koscielny-Bunde E, Rego HHA, Havlin S, Bunde A (2001) Detecting long-range correlations with detrended fluctuation analysis. Physica A 295(3–4):441–454.  https://doi.org/10.1016/S0378-4371(01)00144-3 CrossRefGoogle Scholar
  18. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316(1–4):87–114.  https://doi.org/10.1016/S0378-4371(02)01383-3 CrossRefGoogle Scholar
  19. Kantelhardt JW, Koscielny-Bunde E, Rybski D, Braun P, Bunde A, Havlin S (2006) Long-term persistence and multifractality of precipitation and river runoff records. J Geophys Res 111(D1):D01006.  https://doi.org/10.1029/2005JD005881 CrossRefGoogle Scholar
  20. Király A, Bartos I, Jánosi IM (2006) Correlation properties of daily temperature anomalies over land. Tellus 58A:593–600.  https://doi.org/10.1111/j.1600-0870.2006.00195x CrossRefGoogle Scholar
  21. Kolesnikova VN, Monin AS (1965) Spectra of meteorological field fluctuations. Izv Acad Sci USSR Atmos Oceanic Phys 1:653–669Google Scholar
  22. Koscielny-Bunde E, Kantelhardt JW, Braun P, Bunde A, Havlin S (2006) Long-term persistence and multifractality of river runoff records: detrended fluctuation studies. J Hydrol 322(1):120–137CrossRefGoogle Scholar
  23. Lebyodkin MA, Lebedkina TA, Jacques A (2009) Multifractal analysis of unstable plastic flow. Nova Science, New YorkGoogle Scholar
  24. Liou K (2002) An introduction to atmospheric radiation, International Geophysics Series, vol 84. Academic Press, San DiegoGoogle Scholar
  25. Lovejoy S (2015) A voyage through scales, a missing quadrillion and why the climate is not what you expect. Clim Dyn 44:3187–3210.  https://doi.org/10.1007/s00382-014-2324-0 CrossRefGoogle Scholar
  26. Lovejoy S, Schertzer D (2012) Haar wavelets, fluctuations and structure functions: convenient choices for geophysics. Nonlinear Proc Geophys 19:513–527.  https://doi.org/10.5194/npg-19-513-2012 CrossRefGoogle Scholar
  27. Lovejoy S, Schertzer D, Varon D (2013) Do GCMs predict the climate... or macroweather? Earth Syst Dyn 4:439–454.  https://doi.org/10.5194/esd-4-439-2013 CrossRefGoogle Scholar
  28. Ludescher J, Bogachev MI, Kantelhardt JW, Schumann AY, Bunde A (2011) On spurious and corrupted multifractality: the effects of additive noise, short-term memory and periodic trends. Physica A 390(13):2480–2490.  https://doi.org/10.1016/j.physa.2011.03.008 CrossRefGoogle Scholar
  29. Luo M, Leung Y, Zhou Y, Zhang W (2015) Scaling behaviors of global sea surface temperature. J Clim 28:3122–3132.  https://doi.org/10.1175/JCLI-D-13-00743.1 CrossRefGoogle Scholar
  30. Mali P (2014) Multifractal characterization of global temperature anomalies. Theor Appl Climatol 121:641–6488.  https://doi.org/10.1007/s00704-014-1268-y CrossRefGoogle Scholar
  31. Maraun D, Rust HW, Timmer J (2004) Tempting long-memory—on the interpretation of DFA results. Nonlinear Proc Geophys 11(4):495–503.  https://doi.org/10.5194/npg-11-495-2004 CrossRefGoogle Scholar
  32. Ohmura A, Dutton E, Forgan B, Frohlich C, Gilgen H, Hegne H, Heimo A, Koenig-Langlo G, McArthur B, Muller G, Philipona R, Whitlock C, Dehne K, Wild M (1998) Baseline surface radiation network (BSRN/WCRP): new precision radiometry for climate change research. Bull Am Meteorol Soc 79(10):2115–2136CrossRefGoogle Scholar
  33. Pavlakis KG, Hatzidimitriou D, Matsoukas C, Drakakis E, Hatzianastassiou N, Vardavas I (2004) Ten-year global distribution of downwelling longwave radiation. Atmos Chem Phys 4:127–142.  https://doi.org/10.5194/acp-4-127-2004, http://www.atmos-chem-phys.net/4/127/2004 CrossRefGoogle Scholar
  34. Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685–1689.  https://doi.org/10.1103/PhysRevE.49.1685 CrossRefGoogle Scholar
  35. Rodríguez-Gómez BA, Meizoso-López MdC, Mirás-Avalos JM, García-Tomillo A, Paz-González A (2013) Assessment of solar irradiation models in A Coruña by multifractal analysis. Vadose Zone J 12:0183.  https://doi.org/10.2136/vzj2012.0183 CrossRefGoogle Scholar
  36. Rodrìguez-Iturbe I, Rinaldo A (1997) Fractal river basins: chance and self-organization. Cambridge University Press, New YorkGoogle Scholar
  37. Rybski D, Bunde A, von Storch H (2008) Long-term memory in 1000-year simulated temperature records. J Geophys Res 113(D2):D02106.  https://doi.org/10.1029/2007JD008568 CrossRefGoogle Scholar
  38. Schumann AY, Kantelhardt JW (2011) Multifractal moving average analysis and test of multifractal model with tuned correlations. Physica A 390(14):2637–2654.  https://doi.org/10.1016/j.physa.2011.03.002 CrossRefGoogle Scholar
  39. Shao ZG, Wang HH (2014) Multifractal detrended fluctuation analysis of the \(\delta ^{18}\)O record of NGRIP ice core. Clim Dyn 43(7):2105–2109.  https://doi.org/10.1007/s00382-013-2037-9 CrossRefGoogle Scholar
  40. Talkner P, Weber RO (2000) Power spectrum and detrended fluctuation analysis: application to daily temperatures. Phys Rev E 62(1, part a):150–160.  https://doi.org/10.1103/PhysRevE.62.150 CrossRefGoogle Scholar
  41. Vardavas I, Taylor FW (2007) Radiation and climate, International Series of Monographs on Physics, vol 138. Oxford University Press, OxfordGoogle Scholar
  42. Varotsos C, Kirk-Davidoff D (2006) Long-memory processes in ozone and temperature variations at the region 60\(^{\circ }\)S–60\(^{\circ }\)N. Atmos Chem Phys 6:4093–4100CrossRefGoogle Scholar
  43. Varotsos CA, Efstathiou MN, Cracknell AP (2013) On the scaling effect in global surface air temperature anomalies. Atmos Chem Phys 13:5243–5253.  https://doi.org/10.5194/acp-13-5243-2013 CrossRefGoogle Scholar
  44. Varotsos CA, Lovejoy S, Sarlis NV, Tzanis CG, Efstathiou MN (2015) On the scaling of the solar incident flux. Atmos Chem Phys 15:7301–7306.  https://doi.org/10.5194/acp-15-7301-2015 CrossRefGoogle Scholar
  45. Vindel JM, Polo J (2014) Intermittency and variability of daily solar irradiation. Atmos Res 143:313–327.  https://doi.org/10.1016/j.atmosres.2014.03.001 CrossRefGoogle Scholar
  46. Weber RO, Talkner P (2001) Spectra and correlations of climate data from days to decades. J Geophys Res 106(D17):20131–20144CrossRefGoogle Scholar
  47. Wild M, Folini D, Hakuba MZ, Schär C, Seneviratne SI, Kato S, Rutan D, Ammann C, Wood EF, König-Langlo G (2015) The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Clim Dyn 44(11):3393–3429.  https://doi.org/10.1007/s00382-014-2430-z CrossRefGoogle Scholar
  48. Xu L, Ivanov PC, Hu K, Chen Z, Carbone A, Stanley HE (2005) Quantifying signals with power-law correlations: a comparative study of detrended fluctuation analysis and detrended moving average techniques. Phys Rev E 71(051):101.  https://doi.org/10.1103/PhysRevE.71.051101 CrossRefGoogle Scholar
  49. Zeng Z, Yang H, Zhao R, Meng J (2013) Nonlinear characteristics of observed solar radiation data. Sol Energy 87:204–218.  https://doi.org/10.1016/j.solener.2012.10.019 CrossRefGoogle Scholar
  50. Zhu X, Fraedrich K, Liu Z, Blender R (2010) A demonstration of long-term memory and climate predictability. J Clim 23(18):5021–5029.  https://doi.org/10.1175/2010JCLI3370.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of EnvironmentUniversity of the AegeanMytileneGreece

Personalised recommendations