Advertisement

Contrasting North–South changes in Amazon wet-day and dry-day frequency and related atmospheric features (1981–2017)

  • Jhan Carlo Espinoza
  • Josyane Ronchail
  • José Antonio Marengo
  • Hans Segura
Article
  • 115 Downloads

Abstract

This study provides an updated analysis of the evolution of seasonal rainfall intensity in the Amazon basin, considering the 1981–2017 period and based on HOP (interpolated HYBAM observed precipitation) and CHIRPS (The Climate Hazards Group Infrared Precipitation with Stations) rainfall data sets. Dry and wet day frequencies as well as extreme percentiles are used in this analysis, producing the same results. Dry-day frequency (DDF) significantly increases in the Southern Amazon (p < 0.01), particularly during September–November (SON) in the Bolivian Amazon, central Peruvian Amazon and far southern Brazilian Amazon. Consistently, total rainfall in the southern Amazon during SON also shows a significant diminution (p < 0.05), estimated at 18%. The increase in SON DDF in the southern Amazon is related to a warming of the northern tropical Atlantic Ocean and a weakening of water vapour flux from the tropical Atlantic Ocean. The increase in DDF in the southern Amazon is related to enhanced wind subsidence (ascendance) over the 10°S–20°S (5°S–5°N) region and to a deficit (excess) of specific humidity at 1000–300 hPa south of 10°S (north of the 5°S), which suggest a reduction of deep convection over southern Amazonia. Subsidence over the southern Amazon shows a significant trend (p < 0.01), which can explain the significant increase in DDF. Wet-day frequency (WDF) significantly increases in the northern Amazon, particularly during the March–May (MAM) period (p < 0.01), producing an estimated rainfall increase during MAM of 17% (p < 0.01) between 1981 and 2017. Significant changes in both WDF and rainfall in northern Amazon have been detected in 1998 (p < 0.01). After 1998, the increase in MAM WDF and rainfall is explained by enhanced moisture flux from the tropical North Atlantic Ocean and an increase in deep convection over the northern and northwestern Amazon. These evolutions in DDF and WDF and in the tropical atmosphere occur simultaneously with an increase in sea surface temperature in the northern Atlantic Ocean, particularly after the mid-1990s. These results provide new insight into rainfall variability and climatic features related to increasing dry season length in southern Amazonia. Severe recent droughts may be associated with the increase in DDF in the South. In addition, the increase in MAM rainfall intensity in northern Amazon after 1998 may be associated with several historical floods that occurred after this date.

Notes

Acknowledgements

The authors acknowledge the PNICP-Peru for funding this research through the 397-PNICP-PIAP-2014 contract. JAM is funded by FAPESP/CNPq/CAPES INCT-Climate Change Phase 2 project (FAPESP Grant 2014/50848-9 and CNPq Grant 465501/2014-1). The authors are grateful to the SO-HYBAM observatory for providing rainfall data. We wish to thank the following agencies/organizations for providing access to data: the National Oceanic and Atmospheric Administration (NOAA)–Climate Prediction Center (CPC) for SST information and the ECMWF for ERA-Interim reanalysis data. The authors are grateful to Barbara Fraser and to the three anonymous reviewers for their contribution to improve this paper.

Supplementary material

382_2018_4462_MOESM1_ESM.eps (10.3 mb)
Supplementary material 1 (EPS 10574 KB)
382_2018_4462_MOESM2_ESM.eps (5 mb)
Supplementary material 2 (EPS 5118 KB)

References

  1. Aceituno P (1988) On the functioning of the southern oscillation in the South American sector: surface, climate. Mon Water Rev 116:505–524CrossRefGoogle Scholar
  2. Agudelo J, Arias PA, Vieira SC, Martínez JA (2018) Influence of longer dry seasons in the Southern Amazon on patterns of water vapor transport over northern South America and the Caribbean. Clim Dyn.  https://doi.org/10.1007/s00382-018-4285-1 CrossRefGoogle Scholar
  3. Anderson LO, Aragão L, Valeriano DS, Cardoso M, Shimambukuro Y, Lima A (2013) Impactos das secas nas florestas Amazonicas. In: De Simone Borma L, Nobre CA (eds) Secas na Amazonia: Causas e Consequencias. Oficina de Textos Press, Sao Paulo, pp 148–164Google Scholar
  4. Aragão LEO, Malhi Y, Roman-Cuesta RM, Saatchi S, Anderson LO, Shimabukuro YE (2007) Spatial patterns and fire response of recent Amazonian droughts. Geophys Res Lett 34:L07701.  https://doi.org/10.1029/2006GL028946 CrossRefGoogle Scholar
  5. Aragão LEO et al (2014) Environmental change and the carbon balance of Amazonian forest. Biol Rev 89:913–931CrossRefGoogle Scholar
  6. Aragão LEO et al. (2018) 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat Commun 9(1):536.  https://doi.org/10.1038/s41467-017-02771-y CrossRefGoogle Scholar
  7. Arias PA, Fu R, Hoyos CD, Li W, Zhou L (2011) Changes in cloudiness over the Amazon rainforests during the last two decades: diagnostic and potential causes. Clim Dyn 37(5–6):1151–1164CrossRefGoogle Scholar
  8. Arias PA, Fu R, Vera C, Rojas M (2015) A correlated shortening of the North and South American monsoon seasons in the past few decades. Clim Dyn.  https://doi.org/10.1007/s00382-015-2533-1 CrossRefGoogle Scholar
  9. Boisier JP, Ciais P, Ducharne A, Guimberteau M (2015) Projected strengthening of Amazonian dry season by constrained climate model simulations. Nat Clim Change 5(7):656–660CrossRefGoogle Scholar
  10. Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE, Coe MT, Silvério D, Macedo MN, Davidson EA, Nóbrega CC, Alencar A, Soares-Filho BS (2014) Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.1305499111 CrossRefGoogle Scholar
  11. Brienen RJW et al (2015) Long-term decline of the Amazon carbon sink. Nature 519:344–348.  https://doi.org/10.1038/nature14283 CrossRefGoogle Scholar
  12. Broedel E, Tomasella J, Cândido LA, Von Randow C (2017) Deep soil water dynamics in an undisturbed primary forest in central Amazonia: differences between normal years and the 2005 drought. Hydrol Process.  https://doi.org/10.1002/hyp.11143 CrossRefGoogle Scholar
  13. Brunet-Moret Y (1979) Homogénéisation des précipitations. Cahiers ORSTOM Série Hydrologie 16:3–4Google Scholar
  14. Builes-Jaramillo A, Marwan N, Poveda G, Kurths J (2017) Nonlinear interactions between the Amazon River basin and the Tropical North Atlantic at interannual timescales. Clim Dyn.  https://doi.org/10.1007/s00382-017-3785-8 CrossRefGoogle Scholar
  15. Callède J, Guyot J-L, Ronchail J, L’Hôte Y, Niel H, de Oliveira E (2004) Évolution du débit de l’Amazone à Óbidos de 1902 à 1999. Hydrol Sci J 49:85–97CrossRefGoogle Scholar
  16. Chen JL, Wilson CR, Tapley DB (2010) The 2009 exceptional Amazon flood an interannual terrestrial water storage change observed by GRACE. Water Resour Res 46:W12526.  https://doi.org/10.1029/2010WR009383 CrossRefGoogle Scholar
  17. Coelho C, Cavalcanti I, Ito R, Luz G, Santos L, Nobre CA, Marengo JA, Pezza AB (2013) As secas de 1998, 2005 e 2010. Analise climatologica. In: De Simone Borma L, Nobre CA (eds) Secas na Amazonia: Causas e Consequencias. Oficina de Textos Press, Sao Paulo, pp 89–116Google Scholar
  18. Cook B, Zeng N, Yoon J-H (2012) Will Amazonia dry out? Magnitude and causes of change from IPCC climate model projections. Earth Interact.  https://doi.org/10.1175/2011EI398.1 CrossRefGoogle Scholar
  19. Cox PM, Harris PP, Huntingford C, Betts RA, Collins M, Jones CD, Jupp TE, Marengo JA, Nobre CA (2008) Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453:212–215.  https://doi.org/10.1038/nature06960 CrossRefGoogle Scholar
  20. Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C, Jones CD, Luke CM (2013) Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494:341–344CrossRefGoogle Scholar
  21. Davidson EA, de Araújo AC, Artaxo P, Balch JK, Brown IF, Busta- mante MMC, Coe MT, DeFries RS, Keller M, Longo M, Munger JW, Schroeder W, Soares-Filho BS, Souza CM Jr, Wofsy SC (2012) The Amazon basin in transition. Nature 481:321–328.  https://doi.org/10.1038/nature10717 CrossRefGoogle Scholar
  22. Debortoli NS, Dubreuil V, Funatsu B, Delahaye F, Henke de Oliveira C, Rodrigues-Filho S, Saito H, Fetter C, R., 2015. Rainfall patterns in the Southern Amazon: a chronological perspective (1971–2010). Clim Change 132:251–264.  https://doi.org/10.1007/s10584-015-1415-1 CrossRefGoogle Scholar
  23. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars AC, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, Mcnally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597.  https://doi.org/10.1002/qj.828 CrossRefGoogle Scholar
  24. Dos Santos SRQ, Braga CC, Sansigolo CA, de Araujo TT, Neves TT, dos Santos APP (2017) Droughts in the Amazon: identification, characterization and dynamical mechanisms associated. Am J Clim Change 6:425–442CrossRefGoogle Scholar
  25. Espinoza JC, Ronchail J, Guyot JL, Cocheneau G, Filizola N, Lavado W, de Oliveira E, Pombosa R, Vauchel P (2009a) Spatio-temporal rainfall variability in the Amazon Basin Countries (Brazil, Peru, Bolivia, Colombia and Ecuador). Int J Climatol 29:1574–1594CrossRefGoogle Scholar
  26. Espinoza JC, Guyot JL, Ronchail J, Cochonneau G, Filizola N, Fraizy P, Labat D, de Oliveira E, Julio Ordonez J, Vauchel P (2009b) Contrasting regional discharge evolutions in the Amazon basin (1974–2004). J Hydrol 375(3–4):297–311CrossRefGoogle Scholar
  27. Espinoza JC, Ronchail J, Guyot JL, Junquas C, Vauchel P, Lavado W, Drapeau G, Pombosa R (2011) Climate variability and extreme drought in the upper Solimões River (western Amazon Basin): understanding the exceptional 2010 drought. Geophys Res Lett 38(13):L13406CrossRefGoogle Scholar
  28. Espinoza JC, Ronchail J, Guyot JL, Junquas C, Drapeau G, Martinez JM, Santini W, Vauchel P, Lavado W, Ordoñez J, Espinoza R (2012) From drought to flooding: understanding the abrupt 2010–2011 hydrological annual cycle in the Amazonas river and tributaries. Environ Res Lett 7:024008.  https://doi.org/10.1088/1748-9326/7/2/024008 CrossRefGoogle Scholar
  29. Espinoza JC, Ronchail J, Frappart F, Lavado W, Santini W, Guyot JL (2013) The major floods in the Amazonas river and tributaries (Western Amazon basin) during the 1970–2012 period: a focus on the 2012 flood. J Hydrometeorol 14(3):1000–1008CrossRefGoogle Scholar
  30. Espinoza JC, Marengo JA, Ronchail J, Molina J, Noriega L, Guyot JL (2014) The extreme 2014 flood in South-Western Amazon basin: the role of tropical-subtropical South Atlantic SST gradient. Environ Res Lett 9:124007.  https://doi.org/10.1088/1748-9326/9/12/124007 CrossRefGoogle Scholar
  31. Espinoza JC, Segura H, Ronchail J, Drapeau G, Gutierrez-Cori O (2016) Evolution of wet- and dry-day frequency in the western Amazon basin: relationship with atmospheric circulation and impacts on vegetation. Water Resour Res.  https://doi.org/10.1002/2016WR019305 CrossRefGoogle Scholar
  32. Fernandes K, Baethgen W, Bernardes S, DeFries R, DeWitt D, Goddard L, Lavado W, Eun Lee D, Padoch C, Pinedo Vasquez M, Uriarte M (2011) North tropical Atlantic influence on western Amazon fire season variability. Geophys Res Lett 38(12):L12701CrossRefGoogle Scholar
  33. Fernandes K, Giannini A, Verchot L, Baethgen W, Pinedo-Vasquez M (2015) Decadal covariability of Atlantic SSTs and western Amazon dry-season hydroclimate in observations and CMIP5 simulations. Geophys Res Lett.  https://doi.org/10.1002/2015GL063911 CrossRefGoogle Scholar
  34. Filizola N, Latrubesse EM, Fraizy P, Souza R, Guimarães V, Guyot J-L (2014) Was the 2009 flood the most hazardous or the largest ever recorded in the Amazon? Geomorphology 215:99–105.  https://doi.org/10.1016/j.geomorph.2013.05.028 CrossRefGoogle Scholar
  35. Frappart F, Papa J, Santos da Silva G, Ramillien C, Prigent F, Seyler, Calmant S (2012) Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought. Environ Res Lett 7:044010.  https://doi.org/10.1088/1748-9326/7/4/044010 CrossRefGoogle Scholar
  36. Fu R, Yin L, Li W, Arias PA, Dickinson RE, Huang L, Fernandes K, Liebmann B, Fisher R, Myneni RB (2013) Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc Natl Acad Sci USA 110:18110–18115CrossRefGoogle Scholar
  37. Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2:150066.  https://doi.org/10.1038/sdata.2015.66 2015CrossRefGoogle Scholar
  38. Gatti LV et al (2014) Drought sensitivity of the Amazonian carbon balance revealed by atmospheric measurements. Nature 506:76–80CrossRefGoogle Scholar
  39. Getirana ACV, Dutra E, Guimberteau M, Kam J, Li HY, Decharme B et al (2014) Water balance in the Amazon basin from a land surface model ensemble. J Hydrometeorol 15(6):2586–2614.  https://doi.org/10.1175/JHM-D-14-0068.1 CrossRefGoogle Scholar
  40. Gloor MRJW, Brienen D, Galbraith TR, Feldpausch J, Schöngart W, Guyot JL, Espinoza JC, Lloyd J, Phillips OL (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 40:1729–1733.  https://doi.org/10.1002/grl.50377 CrossRefGoogle Scholar
  41. Good P, Jones C, Lowe J, Betts R, Gedney N (2013) Comparing tropical forest projections from two generations of hadley centre earth system models, HadGEM2-ES and HadCM3LC. J Clim 26(2):495–511.  https://doi.org/10.1175/jcli-d-11-00366.1 CrossRefGoogle Scholar
  42. Guimberteau M, Drapeau G, Ronchail J, Sultan B, Polcher J, Martinez J-M, Prigent C, Guyot J-L, Cochonneau G, Espinoza JC, Filizola N, Fraizy P, Lavado W, De Oliveira E, Pombosa R, Noriega L, Vauchel P (2012) Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new datasets. Hydrol Earth Syst Sci 16:911–935.  https://doi.org/10.5194/hess-16-911-2012 CrossRefGoogle Scholar
  43. Guimberteau M, Ronchail J, Espinoza JC, Lengaigne M, Sultan B, Polcher J, Drapeau G, Guyot JL, Ducharne A, Cialis P (2013) Future changes in precipitation and impacts on extreme stream-flow over Amazonian sub-basins. Environ Res Lett 8:014035.  https://doi.org/10.1088/1748-9326/8/1/014035 CrossRefGoogle Scholar
  44. Hiez G, Cochonneau G, Sechet P, Medeiros Fernandes U (1991) Aplicaçao do método do Vetor Regional: analise da pluviometria anual da bacia amazônica. IX Simposio Brasileiro de Recursos Hidricos. ABRH 1:367–377Google Scholar
  45. Huntingford C, Zelazowski P, Galbraith D, Mercado LM, Sitch S, Fisher R, Loma M, Walkenrn AP, Jones CD, Booth BBB, Malhi Y, Hemming D, Kay G, Good P, Lewis SL, Phillips OL, Atkin OK, Lloyd J, Gloor E, Zaragoza-Castells J, Meir P, Betts R, Harris PP, Nobre C, Marengo J, Cox PM (2013) Simulated resilience of tropical rainforests to CO2-induced climate change. Nat Geosci 6:268–273.  https://doi.org/10.1038/NGEO1741 CrossRefGoogle Scholar
  46. Jenkins HS (2009) Amazon climate reconstruction using growth rates and stable isotopes of tree ring cellulose from the Madre de Dios Basin, Peru. Dissertation, Department of Earth and Ocean Sciences, Duke University, Durham, North Carolina, USAGoogle Scholar
  47. Jiménez-Muñoz JC, Mattar C, Barichivichn J, Santamaría-Artigas A, Takahashi K, Malhi Y, Sobrino JA, Van der Schrier G (2016) Record-breaking warming an extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci Rep.  https://doi.org/10.1038/srep33130 CrossRefGoogle Scholar
  48. Kaplan A et al (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103 18:567–518, 589Google Scholar
  49. Kendall M (1975) Rank correlation methods. Grifin, LondonGoogle Scholar
  50. Lavado CWS, Ronchail J, Labat D, Espinoza JC, Guyot JL (2012) Basin-scale analysis of rainfall and runoff in Peru (1969–2004): Pacific, Titicaca and Amazonas drainages. Hydrol Sci J Journal Des Sciences Hydrologiques 57(4):625–642CrossRefGoogle Scholar
  51. Lewis SL, Brando PM, Phillips OL, van der Heijden GMF, Nepstad D (2011) The 2010 Amazon drought. Science 331(6017):554–554CrossRefGoogle Scholar
  52. Maeda EE, Kim H, Aragão LEOC, Famiglietti JS, Oki T (2015) Disruption of hydroecological equilibrium in southwest Amazon mediated by drought. Geophys Res Lett.  https://doi.org/10.1002/2015GL065252 CrossRefGoogle Scholar
  53. Magrin GO, Marengo JA, Boulanger JP, Buckeridge MS, Castellanos E, Poveda G, Scarano FR, Vicuna S (2014) Central and South America. In: Climate change 2014: impacts, adaptation and vulnerability. Contribution of Working Group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  54. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1998) A Pacific decadal climate oscillation with impacts on salmon. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  55. Marengo JA (1992) Interannual variability of surface climate in the Amazon basin. Int J Climatol 12:853–863CrossRefGoogle Scholar
  56. Marengo JA (2004) Inter-decadal variability and trends in rainfall in the Amazon basin. Theor Appl Climatol 78:79–96CrossRefGoogle Scholar
  57. Marengo JA, Espinoza JC (2016) Review article. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int J Climatol.  https://doi.org/10.1002/joc.4420 CrossRefGoogle Scholar
  58. Marengo JA, Liebmann B, Kousky VE, Filizola NP, Wainer IC (2001) Onset and end of the rainy season in the Brazilian Amazon Basin. J Clim 14(5):833–852CrossRefGoogle Scholar
  59. Marengo JA, Nobre CA, Tomasella J, Oyama MD, Oliveira GS, de Oliveira R, Camargo H, Alves LM, Brown IF (2008) The drought of Amazonia in 2005. J Clim 21:495–516.  https://doi.org/10.1175/2007JCLI1600.1 CrossRefGoogle Scholar
  60. Marengo JA, Tomasella J, Soares W, Alves LM, Nobre CA (2010) Extreme climatic events in the Amazon basin: climatological and hydrological context of previous floods. Theor Appl Climatol 85:1–13Google Scholar
  61. Marengo JA, Tomasella J, Alves LM, Soares W, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:1–5CrossRefGoogle Scholar
  62. Marengo JA, Borma LS, Rodriguez DA, Pinho P, Soares WR, Alves LM (2013a) Recent extremes of drought and flooding in Amazonia: vulnerabilities and human adaptation. Am J Clim Change 2:87–96.  https://doi.org/10.4236/ajcc.2013.22009 CrossRefGoogle Scholar
  63. Marengo JA, Alves LM, Soares WR, Rodriguez DA, Camargo H, Paredes M, Diaz Pablo A (2013b) Two contrasting seasonal extremes in tropical South America in 2012: flood in Amazonia and drought in Northeast Brazil. J Clim 26(22):9137–9154CrossRefGoogle Scholar
  64. Marengo JA, Espinoza JC, Ronchail J, Alves LM (2015) [Regional Climates] Tropical South America east of the Andes [in “State of the Climate in 2014”]. Bull Amer Meteor Soc 96(7):S179–S181Google Scholar
  65. Marengo JA, Espinoza JC, Ronchail J, Alves LM, Baez J (2017) [Regional Climates] Central South America [in “State of the Climate in 2016”]. Bull Amer Meteor Soc 98(8):S187–S190Google Scholar
  66. Meggers B (1994) Archeological evidence for the impact of Mega-El Niño events on Amazonia during the past two millennia. Clim Change 28:321–338.  https://doi.org/10.1007/BF01104077 CrossRefGoogle Scholar
  67. Mendes de Moura Y et al (2015) Seasonality and drought effects of Amazonian forests observed from multi-angle satellite data. Remote Sens Environ 171:278–290.  https://doi.org/10.1016/j.rse.2015.10.015 CrossRefGoogle Scholar
  68. Molina-Carpio J, Espinoza JC, Vauchel P, Ronchail J, Gutierrez B, Guyot JL, Noriega L (2017) The hydroclimatology of the upper Madeira River basin: spatio-temporal variability and trends (1967–2013). Hydrol Sci J.  https://doi.org/10.1080/02626667.2016.1267861 CrossRefGoogle Scholar
  69. Nobre CA, Sampaio G, Borma LS, Castilla-rubio JC, Silva JS, Cardoso M (2016) Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. PNAS 113(39):10759–10768.  https://doi.org/10.1073/pnas.1605516113 CrossRefGoogle Scholar
  70. Ovando A, Tomasella J, Rodriguez DA, Martinez JM, Siqueira-Junior JL, Pinto GLN, Passy P, Vauchel P, Noriega L, von Randow C (2016) Extreme flood events in the Bolivian Amazon wetlands. J Hydrol Reg Stud 5:293–308CrossRefGoogle Scholar
  71. Paccini L, Espinoza JC, Ronchail J, Segura H (2017) Intraseasonal rainfall variability in the Amazon basin related to large-scale circulation patterns: a focus on western Amazon-Andes transition region. Int J Climatol.  https://doi.org/10.1002/joc.5341 CrossRefGoogle Scholar
  72. Panisset JS, Libonati R, Gouveia CMP, Machado-Silva F, França DA, França JRA, Peres LF (2018) Contrasting patterns of the extreme drought episodes of 2005, 2010 and 2015 in the Amazon Basin. Int J Climatol.  https://doi.org/10.1002/joc.5224 CrossRefGoogle Scholar
  73. Pettitt A (1979) A non-parametric approach to the change-point problem. Appl Stat 28:126–135CrossRefGoogle Scholar
  74. Phillips OL, Aragão LEOC, Lewis SL, Fisher JB, Lloyd J, López-González G, Malhi Y, Monteagudo A, Peacock J, Quesada CA, van der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, Baker TR, Bánki O, Blanc L, Bonal D, Brando P, Chave J, Oliveira CA, Cardozo ND, Czimczik CI, Feldpausch TR, Freitas MA, Gloor E, Higuchi N, Jiménez E, Lloyd G, Meir P, Mendoza C, Morel A, Neill DA, Nepstad D, Patiño S, Peñuela MC, Prieto A, Ramírez F, Schwarz M, Silva J, Silveira M, Thomas AS, ter Steege H, Stropp J, Vásquez R, Zelazowski P, Dávila EA, Andelman S, Andrade A, Chao KJ, Erwin T, Di Fiore A, Honorio ES, Keeling H, Killeen TJ, Laurance WF, Cruz AP, Pitman NCA, Vargas PN, Ramırez-Angulo H, Rudas A, Salamão R, Silva N, Terborgh J, Torres-Lezama A (2009) Drought sensitivity of the Amazon rainforest. Science 323:1344–1347.  https://doi.org/10.1126/science.1164033 CrossRefGoogle Scholar
  75. Polade SD, Pierce DW, Cayan DR, Gershunov A, Dettinger MD (2014) The key role of dry days in changing regional climate and precipitation regimes. Nat Sci Rep 4:4364.  https://doi.org/10.1038/srep04364 CrossRefGoogle Scholar
  76. Richey JE, Nobre CA, Deser C (1989) Amazon river discharge and climate variability: 1903 to 1985. Science 246:101–103CrossRefGoogle Scholar
  77. Ronchail J, Cochonneau G, Molinier M, Guyot JL, Goretti de Miranda Chaves A, Guimarães V, de Oliveira E (2002) Rainfall variability in the Amazon Basin and SSTs in the tropical Pacific and Atlantic oceans. Int J Climatol 22:1663–1686CrossRefGoogle Scholar
  78. Ronchail J, Bourrel L, Cochonneau G, Vauchel P, Phillips L, Castro A, Guyot JL, de Oliveira E (2005) Inundations in the Mamoré basin (south-western Amazon—Bolivia) and sea-surface temperature in the Pacific and Atlantic Oceans. J Hydrol 302:223–238CrossRefGoogle Scholar
  79. Ronchail J et al (2006) Impact of the Amazon tributaries on flooding in Obidos. IAHS Publ 308:220–225Google Scholar
  80. Ronchail J, Espinoza JC, Guimberteau M, Manon S, Cochonneau G, Schor T (2018) The flood recession period in Western Amazonia and its variability during the 1985–2015 period. J Hydrol Reg Stud 15:16–30.  https://doi.org/10.1016/j.ejrh.2017.11.008 CrossRefGoogle Scholar
  81. Saatchi S, Asefi-Najafabady S, Malhi Y, Aragão LEOC, Anderson LO, Myneni RB, Nemani R (2013) Persistent effects of severe drought on Amazonian forest canopy. Proc Natl Acad Sci USA 110:565–570.  https://doi.org/10.1073/pnas.1204651110 CrossRefGoogle Scholar
  82. Salati E, Vose PB (1984) Amazon basin: a system in equilibrium. Science 225:129–138CrossRefGoogle Scholar
  83. Salazar LF, Nobre CA, Oyama MD (2007) Climate change consequences on the biome distribution in tropical South America. Geophys Res Lett 34(9):L09708CrossRefGoogle Scholar
  84. Satyamurty P, de Castro AA, Tota J, da Silva Gularte JJ, Manzi AO (2010) Rainfall trends in the Brazilian Amazon in the past eight decades. Theor Appl Climatol 99: 139–148,  https://doi.org/10.1007/s00704-009-0133-x CrossRefGoogle Scholar
  85. Satyamurty P, Wanzeler da Costa CP, Manzi AO (2013a) Moisture sources for the Amazon basin: a study of contrasting years. Theor Appl Climatol 111: 195–209,  https://doi.org/10.1007/s00704-012-0637-7 CrossRefGoogle Scholar
  86. Satyamurty P, da Costa CPW, Manzi AO, Candido LA (2013b) A quick look at the 2012 record flood in the Amazon basin. Geophys Res Lett 40:1396–1401CrossRefGoogle Scholar
  87. Sena JA, Beser de Deus LB, Fretas MAV, Costa L (2012) Extreme events of droughts and floods in Amazonia: 2005 and 2009. Water Resour Manag 26:1665–1676.  https://doi.org/10.1007/s11269-012-9978-3 CrossRefGoogle Scholar
  88. Sheffield J, Wood EF (2011) Drought: past problems and future scenarios. Earthscan, LondonGoogle Scholar
  89. Shiogama H, Watanabe M, Imada Y, Mori M, Ishii M, Kimoto M (2013) An event attribution of the 2010 drought in the South Amazon region using the MIROC5 model. Atmos Sci Lett 18(2):103–104.  https://doi.org/10.1002/asl2.435 CrossRefGoogle Scholar
  90. Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854–1997). J Clim 17:2466–2477CrossRefGoogle Scholar
  91. Sombroek W (2001) Spatial and temporal patterns of Amazon rainfall. Consequences for the planning of agricultural occupation and the protection of primary forests. AMBIO 30(303):388–396.  https://doi.org/10.1579/0044-7447-30.7.388 CrossRefGoogle Scholar
  92. Sternberg H (1968) Man and environmental change in South America. In: Fittkau EJ, Elias TS, Klinge H, Schwabe CH, Sioli H (eds) Biogeography and ecology in South America, vol I. Junk, The Hague, pp 413–445Google Scholar
  93. Sternberg H (1987) Aggravation of floods in the Amazon River as a consequence of deforestation? Geogr Ann 69:201–219CrossRefGoogle Scholar
  94. Tomasella J, Borma LS, Marengo JA, Rodriguez DA, Cuartas LA, Nobre CA, Prado MCR (2011) The droughts of 1996–1997 and 2004–2005 in Amazonia: hydrological response in the river main-stem. Hydrol Process 25:1228–1242.  https://doi.org/10.1002/hyp.7889 CrossRefGoogle Scholar
  95. Tomasella J, Pinho PF, Borma LS, Marengo JA, Nobre C, Bittencourt ORFO, Prado MCR, Rodriguez DA, Cuartas LA (2013) The droughts of 1997 and 2005 in Amazonia: floodplain hydrology an its potential ecological and human impacts. Clim Change.  https://doi.org/10.1007/s10584-012-0508-3 CrossRefGoogle Scholar
  96. Vale R, Filizola N, Souza R, Schongart J (2011) A cheia de 2009 na Amazonia Brasileira. Rev Bras Geocienc 41(4):577–586CrossRefGoogle Scholar
  97. Williams E, Dall’Antonia A, Dall’Antonia V, de Almeida J, Suarez F, Liebmann B, Malhado ACM (2005) The drought of the century in the Amazon basin: an analysis of the regional variation of rainfall in South America in 1926. Acta Amazon 35(2):231–238.  https://doi.org/10.1590/S0044-59672005000200013 CrossRefGoogle Scholar
  98. Wongchuig-Correa S, de Paiva RCD, Espinoza JC, Collischonn W (2017) Multi-decadal hydrological retrospective: case study of Amazon floods and droughts. J Hydrol.  https://doi.org/10.1016/j.jhydrol.2017.04.019 CrossRefGoogle Scholar
  99. Wright JS, Fu R, Worden JR, Chakraborty S, Clinton NE, Risi R, Sun Y, Yin L (2017) Rainforest-initiated wet season onset over the southern Amazon. PNAS 114(32):8481–8486.  https://doi.org/10.1073/pnas.1621516114 CrossRefGoogle Scholar
  100. Yin L et al (2014) What controls the interannual variation of the wet season onsets over the Amazon? J Phys Res Atmos 119(5):2314–2328.  https://doi.org/10.1002/2013JD021349 CrossRefGoogle Scholar
  101. Yoon J-H, Zeng N (2010) An Atlantic influence on Amazon rainfall. Clim Dyn 34:249–264.  https://doi.org/10.1007/s00382-009-0551-6 CrossRefGoogle Scholar
  102. Zbigniew W (2004) Change detection in hydrological records—a review of the methodology. Hydrol Sci J 49:7–119CrossRefGoogle Scholar
  103. Zeng N, Yoon JH, Marengo JA, Subramaniam A, Nobre CA, Mariotti A, Neelin D (2008) Causes and impacts of the 2005 Amazon drought. Environ Res Lett 3:014002.  https://doi.org/10.1088/1748-9326/3/1/014002 CrossRefGoogle Scholar
  104. Zou Y, Macau EEN, Sampaio G, Ramos AMT, Kurths J (2015) Do the recent severe droughts in the Amazonia have the same period of length? Clim Dyn.  https://doi.org/10.1007/s00382-015-2768-x CrossRefGoogle Scholar
  105. Zulkafly Z, Buytaert W, Manz B, Rosas C, Willems P, Lavado-Casimiro W, Guyot JL, Santini W (2016) Projected increases in the annual flood pulse of the Western Amazon. Environ Res Lett 11:014013.  https://doi.org/10.1088/1748-9326/11/1/014013 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Geofísico del Perú (IGP)LimaPeru
  2. 2.Univ. Paris Diderot and Sorbonne Paris Cité, UMR Locean (Sorbonne Universités-UPMC, CNRS, IRD, MNHN)ParisFrance
  3. 3.Centro Nacional de Monitoramento e Alerta de Desastres Naturais (CEMADEN)São PauloBrazil
  4. 4.Université Grenoble-Alpes, UMR Geosciences of the Environment Laboratory-IGE (CNRS, Grenoble INP, IRD, UGA)GrenobleFrance

Personalised recommendations