Climate Dynamics

, Volume 52, Issue 9–10, pp 5383–5396 | Cite as

Biogeophysical feedback of phytoplankton on the Arctic climate. Part I: Impact of nonlinear rectification of interactive chlorophyll variability in the present-day climate

  • Hyung-Gyu Lim
  • Jong-Seong KugEmail author
  • Jong-Yeon Park


Phytoplankton biomass substantially influences the Arctic climate via biogeophysical feedback, i.e., an increase in the mean chlorophyll concentration absorbs more shortwave radiation in the surface ocean layer, which leads to Arctic surface warming. Here, we identified that in addition to the effect of the mean chlorophyll change, an interannual chlorophyll variability substantially influences the Arctic mean climate state, even though the mean chlorophyll remains the same. We found that two nonlinear rectifications of chlorophyll variability induced Arctic cooling. One was due to the effect of a nonlinear shortwave heating term, which was induced by the positive ice–phytoplankton covariability in the boreal summer. The other was due to a cooling effect by rectification of a nonlinear function of the shortwave absorption rate, which reduced the shortwave absorption rate by interannually varying chlorophyll. In the Coupled Model Intercomparison Project, earth system models that included biogeophysical feedback simulated a colder Arctic condition than models without a biogeophysical feedback. This result suggests a possible mechanism in understanding how chlorophyll variability interacts with the Arctic climate system and its impact on the Arctic mean climate state.


Ocean biogeochemical model Arctic climate Chlorophyll feedback Bio-geophysical feedback 



This work is supported by the project titled ‘[Korea-Arctic Ocean Observing System (K-AOOS), KOPRI, 20160245]’, funded by the MOF, Korea, and the National Research Foundation of Korea (NRF-2017R1A2B3011511). H.-G. Lim is supported by Hyundai Motor Chung Mong-Koo Foundation.


  1. Ardyna M, Babin M, Gosselin M, Devred E, Rainville L, Tremblay J (2014) Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys Res Lett 41:6207–6212CrossRefGoogle Scholar
  2. Arrigo KR, van Dijken G, Pabi S (2008) Impact of a shrinking Arctic ice cover on marine primary production. Geophys Res Lett. Google Scholar
  3. Arrigo KR, Perovich DK, Pickart RS, Brown ZW, Van Dijken GL, Lowry KE, Mills MM, Palmer MA, Balch WM, Bahr F (2012) Massive phytoplankton blooms under Arctic sea ice. Science 336:1408–1408CrossRefGoogle Scholar
  4. Arrigo KR, Perovich DK, Pickart RS, Brown ZW, van Dijken GL, Lowry KE, Mills MM, Palmer MA, Balch WM, Bates NR, Benitez-Nelson CR, Brownlee E, Frey KE, Laney SR, Mathis J, Matsuoka A, Greg Mitchell B, Moore GWK, Reynolds RA, Sosik HM, Swift JH (2014) Phytoplankton blooms beneath the sea ice in the Chukchi sea. Deep Sea Res Part II 105:1–16. CrossRefGoogle Scholar
  5. Bhatt US, Walker DA, Walsh JE, Carmack EC, Frey KE, Meier WN, Moore SE, Parmentier F-JW, Post E, Romanovsky VE, Simpson WR (2014) Implications of Arctic Sea Ice decline for the earth system. Annu Rev Environ Resour 39:57–89. CrossRefGoogle Scholar
  6. Bintanja R, Graversen R, Hazeleger W (2011) Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space. Nat Geosci 4:758–761CrossRefGoogle Scholar
  7. Boé J, Hall A, Qu X (2009) September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nat Geosci 2:341. CrossRefGoogle Scholar
  8. Cabré A, Marinov I, Leung S (2015) Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models. Clim Dyn 45:1253–1280CrossRefGoogle Scholar
  9. Carmack E, Barber D, Christensen J, Macdonald R, Rudels B, Sakshaug E (2006) Climate variability and physical forcing of the food webs and the carbon budget on panarctic shelves. Prog Oceanogr 71:145–181. CrossRefGoogle Scholar
  10. Ding Q, Schweiger A, Lheureux M, Battisti DS, Po-Chedley S, Johnson NC, Blanchard-Wrigglesworth E, Harnos K, Zhang Q, Eastman R, Steig EJ (2017) Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat Clim Change 7:289–295.
  11. Dufresne J-L, Foujols M-A, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel J-P, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix J-Y, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre M-P, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N (2013) Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165. CrossRefGoogle Scholar
  12. Dunne JP, John JG, Adcroft AJ, Griffies SM, Hallberg RW, Shevliakova E, Stouffer RJ, Cooke W, Dunne KA, Harrison MJ, Krasting JP, Malyshev SL, Milly PCD, Phillipps PJ, Sentman LT, Samuels BL, Spelman MJ, Winton M, Wittenberg AT, Zadeh N (2012) GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J Clim 25:6646–6665. CrossRefGoogle Scholar
  13. Dunne JP, John JG, Shevliakova E, Stouffer RJ, Krasting JP, Malyshev SL, Milly PCD, Sentman LT, Adcroft AJ, Cooke W, Dunne KA, Griffies SM, Hallberg RW, Harrison MJ, Levy H, Wittenberg AT, Phillips PJ, Zadeh N (2013) GFDL’s ESM2 global coupled climate—carbon earth system models. Part II: Carbon system formulation and baseline simulation characteristics*. J Clim 26:2247–2267. CrossRefGoogle Scholar
  14. Griffies SM (2012) Elements of the modular ocean model (MOM). NOAA Geophysical Fluid Dynamics Laboratory, PrincetonGoogle Scholar
  15. Holland MM, Serreze MC, Stroeve J (2010) The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models. Clim Dyn 34:185–200CrossRefGoogle Scholar
  16. Horvat C, Jones DR, Iams S, Schroeder D, Flocco D, Feltham D (2017) The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean. Sci Adv. Google Scholar
  17. Jerlove NG (1968) Optical oceanography. Elsevier, OxfordGoogle Scholar
  18. Jochum M, Yeager S, Lindsay K, Moore K, Murtugudde R (2010) Quantification of the feedback between phytoplankton and ENSO in the community climate system model. J Clim 23:2916–2925CrossRefGoogle Scholar
  19. Kang X, Zhang R-H, Gao C, Zhu J (2017) An improved ENSO simulation by representing chlorophyll-induced climate feedback in the NCAR community earth system model. Sci Rep 7:17123. CrossRefGoogle Scholar
  20. Laufkötter C, Vogt M, Gruber N, Aita-Noguchi M, Aumont O, Bopp L, Buitenhuis E, Doney SC, Dunne J, Hashioka T, Hauck J, Hirata T, John J, Le Quéré C, Lima ID, Nakano H, Seferian R, Totterdell I, Vichi M, Völker C (2015) Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12:6955–6984. CrossRefGoogle Scholar
  21. Lee K-W, Yeh S-W, Kug J-S, Park J-Y (2014) Ocean chlorophyll response to two types of El Niño events in an ocean–biogeochemical coupled model. J Geophys Res Oceans 119:933–952. CrossRefGoogle Scholar
  22. Lengaigne M, Menkes C, Aumont O, Gorgues T, Bopp L, André J-M, Madec G (2007) Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model. Clim Dyn 28:503–516. CrossRefGoogle Scholar
  23. Lengaigne M, Madec G, Bopp L, Menkes C, Aumont O, Cadule P (2009) Bio-physical feedbacks in the Arctic Ocean using an Earth system model. Geophys Res Lett 36:21CrossRefGoogle Scholar
  24. Lim H-G, Park J-Y, Kug J-S (2017) Impact of chlorophyll bias on the tropical Pacific mean climate in an earth system model. Clim Dyn. Google Scholar
  25. Lindsay K, Bonan GB, Doney SC, Hoffman FM, Lawrence DM, Long MC, Mahowald NM, Moore JK, Randerson JT, Thornton PE (2014) Preindustrial-control and twentieth-century carbon cycle experiments with the earth system model CESM1(BGC). J Clim 27:8981–9005. CrossRefGoogle Scholar
  26. Manizza M, Le Quéré C, Watson AJ, Buitenhuis ET (2005) Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophys Res Lett 32:L05603. CrossRefGoogle Scholar
  27. Marzeion B, Timmermann A, Murtugudde R, Jin F-F (2005) Biophysical feedbacks in the tropical Pacific. J Clim 18:58–70CrossRefGoogle Scholar
  28. Mignot J, Swingedouw D, Deshayes J, Marti O, Talandier C, Séférian R, Lengaigne M, Madec G (2013) On the evolution of the oceanic component of the IPSL climate models from CMIP3 to CMIP5: a mean state comparison. Ocean Model 72:167–184CrossRefGoogle Scholar
  29. Morel A (1988) Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J Geophys Res 93:749–810CrossRefGoogle Scholar
  30. Morel A, Antoine D (1994) Heating rate within the upper ocean in relation to its bio-optical state. J Phys Oceanogr 24:1652–1665CrossRefGoogle Scholar
  31. Müller D, Krasemann H, Brewin RJW, Brockmann C, Deschamps P-Y, Doerffer R, Fomferra N, Franz BA, Grant MG, Groom SB, Mélin F, Platt T, Regner P, Sathyendranath S, Steinmetz F, Swinton J (2015) The ocean colour climate change initiative: I. A methodology for assessing atmospheric correction processors based on in-situ measurements. Remote Sens Environ 162:242–256. CrossRefGoogle Scholar
  32. Murtugudde R, Beauchamp J, McClain CR, Lewis M, Busalacchi AJ (2002) Effects of penetrative radiation on the upper tropical ocean circulation. J Clim 15:470–486CrossRefGoogle Scholar
  33. Ohlmann JC (2003) Ocean radiant heating in climate models. J Clim 16:1337–1351. CrossRefGoogle Scholar
  34. Park J-Y, Kug J-S (2013) Marine biological feedback associated with Indian Ocean Dipole in a coupled ocean/biogeochemical model. Clim Dyn 42:329–343. CrossRefGoogle Scholar
  35. Park J-Y, Kug J-S, Park Y-G (2014a) An exploratory modeling study on bio-physical processes associated with ENSO. Prog Oceanogr 124:28–41. CrossRefGoogle Scholar
  36. Park J-Y, Kug J-S, Seo H, Bader J (2014b) Impact of bio-physical feedbacks on the tropical climate in coupled and uncoupled GCMs. Clim Dyn 43:1811–1827. CrossRefGoogle Scholar
  37. Park JY, Kug JS, Badera J, Rolph R, Kwon M (2015) Amplified Arctic warming by phytoplankton under greenhouse warming. Proc Natl Acad Sci USA 112:5921–5926. CrossRefGoogle Scholar
  38. Patara L, Vichi M, Masina S, Fogli PG, Manzini E (2012) Global response to solar radiation absorbed by phytoplankton in a coupled climate model. Clim Dyn 39:1951–1968. CrossRefGoogle Scholar
  39. Paulson CA, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7:952–956CrossRefGoogle Scholar
  40. Peralta-Ferriz C, Woodgate RA (2015) Seasonal and interannual variability of pan-Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling. Prog Oceanogr 134:19–53. CrossRefGoogle Scholar
  41. Perovich DK, Light B, Eicken H, Jones KF, Runciman K, Nghiem SV (2007) Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: attribution and role in the ice–albedo feedback. Geophys Res Lett 34:19CrossRefGoogle Scholar
  42. Popova EE, Yool A, Coward AC, Dupont F, Deal C, Elliott S, Hunke E, Jin M, Steele M, Zhang J (2012) What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry. J Geophys Res Oceans 117:C00D12. CrossRefGoogle Scholar
  43. Rayner N, Parker DE, Horton E, Folland C, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108:D14CrossRefGoogle Scholar
  44. Sathyendranath S, Platt T (1991) Estimation of new production in the ocean by compound remote sensing. Nature 353:129CrossRefGoogle Scholar
  45. Serreze MC, Francis JA (2006) The Arctic amplification debate. Clim Change 76:241–264CrossRefGoogle Scholar
  46. Stroeve JC, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier WN (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39:L16502. CrossRefGoogle Scholar
  47. Strutton PG, Chavez FP (2004) Biological heating in the equatorial Pacific: observed variability and potential for real-time calculation. J Clim 17:1097–1109CrossRefGoogle Scholar
  48. Timmermann A, Jin F-F (2002) Phytoplankton influences on tropical climate. Geophys Res Lett 29:19. Google Scholar
  49. Vancoppenolle M, Bopp L, Madec G, Dunne J, Ilyina T, Halloran PR, Steiner N (2013) Future Arctic Ocean primary productivity from CMIP5 simulations: uncertain outcome, but consistent mechanisms. Glob Biogeochem Cycles 27:605–619. CrossRefGoogle Scholar
  50. Vichi M, Pinardi N, Masina S (2007) A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: Theory. J Mar Syst 64:89–109CrossRefGoogle Scholar
  51. Wassmann P, Reigstad M (2011) Future Arctic Ocean seasonal ice zones and implications for pelagic–benthic coupling. Oceanography 24(3):220–231CrossRefGoogle Scholar
  52. Yeh S-W, Kug J-S, An S-I (2014) Recent progress on two types of El Niño: observations, dynamics, and future changes. Asia Pac J Atmos Sci 50:69–81. CrossRefGoogle Scholar
  53. Yim BY, Min HS, Kim BM, Jeong JH, Kug JS (2016) Sensitivity of Arctic warming to sea ice concentration. J Geophys Res Atmos 121:6927–6942CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Environmental Science and EngineeringPohang University of Science and Technology (POSTECH)PohangSouth Korea
  2. 2.Department of Earth and Environmental SciencesChonbuk National UniversityJeonjuSouth Korea

Personalised recommendations