Advertisement

Preferred solar signal and its transfer in the Asian–Pacific subtropical jet region

  • Delin Li
  • Ziniu Xiao
  • Liang Zhao
Article

Abstract

Solar impact on the tropospheric subtropical jet (SJ) has been identified previously from a zonally averaged perspective. The SJ was observed to be weaker in the high solar activity winters. However, some regional features of solar-induced SJ variations might remain unrecognized. Here it is found that the regional solar signal in wintertime Asian–Pacific zonal wind at 200 hPa, which exhibits a tripolar banded structure, greatly resembles the second internal mode of zonal wind within the same sector. Significant response of the Asian–Pacific SJ (APSJ) to increased solar forcing in boreal winter exclusively marks its center region, showing a deceleration in westerlies. Further exploration suggests two possible top–down routes to interpret this particular manifestation of solar signal in APSJ center, a tropical route and a middle–high latitude route. Regarding the tropical route, during the cold season, driven by the solar-associated reduction in Brewer–Dobson circulation, ozone concentration in tropical lower stratosphere increases notably and merely within the zonal range of APSJ center. This heats the air here and the tropical tropospheric regional upwelling is thereby suppressed. Consequently, a significant weakened APSJ center is produced via local Hadley cell. Regarding the middle–high latitude route, in early winter, solar-related pronounced westerly anomalies in the mid-latitude stratosphere only appear in the longitudinal range of APSJ center. Meanwhile, the upward propagating planetary waves from the troposphere could be reflected back downward by this intensified stratospheric westerlies. As winter progresses, through wave mean flow interactions, a resultant weakened APSJ center markedly presents in the middle of winter.

Keywords

Regional solar signal Asian–Pacific subtropical jet Top–down transfer of solar signal Solar effects 

Notes

Acknowledgements

The authors appreciate the helpful suggestions from Dr. Katja Matthes. This work was jointly supported by the National Natural Science Foundation of China (91637208), the National Basic Research Program of China (2012CB957804), the Natural Science Foundation of China (41305131), and the Key Project of Natural Science Foundation of Yunnan (2016FA041).

References

  1. Ambaum MHP, Hoskins BJ, Stephenson DB (2001) Arctic oscillation or North Atlantic oscillation? J Clim 14(16):3495–3507.  https://doi.org/10.1175/1520-0442(2001)014%3C3495:AOONAO%3E2.0.CO;2 CrossRefGoogle Scholar
  2. Andreoli RV, Kayano MT (2005) ENSO-related rainfall anomalies in South America and associated circulation features during warm and cold Pacific decadal oscillation regimes. Int J Climatol 25:2017–2030.  https://doi.org/10.1002/joc.1222 CrossRefGoogle Scholar
  3. Arkin PA (1982) The relationship between interannual variability in the 200 mb tropical wind field and the Southern Oscillation. Mon Weather Rev 110:1393–1404.  https://doi.org/10.1175/1520-0493(1982)110%3C1393:TRBIVI%3E2.0.CO;2 CrossRefGoogle Scholar
  4. Baldwin MP, Dunkerton TJ (1999) Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J Geophys Res 104(D24):30937–30946.  https://doi.org/10.1029/1999JD900445 CrossRefGoogle Scholar
  5. Chen WY, van den Dool HM (1999) Significant change of extratropical natural variability and potential predictability associated with the El Nino/Southern Oscillation. Tellus 51A:790–802.  https://doi.org/10.1034/j.1600-0870.1999.00017.x CrossRefGoogle Scholar
  6. Chen W, Zhou Q (2012) Modulation of the Arctic Oscillation and the East Asian winter climate relationships by the 11-year solar cycle. Adv Atmos Sci 29:217–226.  https://doi.org/10.1007/s00376-011-1095-3 CrossRefGoogle Scholar
  7. Codron F (2007) Relations between annular modes and the mean state: Southern Hemisphere winter. J Atmos Sci 64:3328–3339.  https://doi.org/10.1175/JAS4012.1 CrossRefGoogle Scholar
  8. Crooks SA, Gray LJ (2005) Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset. J Clim 18:996–1015.  https://doi.org/10.1175/JCLI-3308.1 CrossRefGoogle Scholar
  9. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597.  https://doi.org/10.1002/qj.828 CrossRefGoogle Scholar
  10. Gleisner H, Thejll P (2003) Patterns of tropospheric response to solar variability. Geophys Res Lett 30:1711.  https://doi.org/10.1029/2003GL017129 CrossRefGoogle Scholar
  11. Gong DY, Ho CH (2003) Arctic oscillation signals in the East Asian summer monsoon. J Geophys Res 108:4066.  https://doi.org/10.1029/2002JD002193 CrossRefGoogle Scholar
  12. Gray LJ, Scaife AA, Mitchell DM, Osprey S, Ineson S, Hardiman S, Butchart N, Knight J, Sutton R, Kodera K (2013) A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns. J Geophys Res Atmos 118:13405–13420.  https://doi.org/10.1002/2013JD020062 CrossRefGoogle Scholar
  13. Guo Y, Wen Z, Wu R, Lu R, Chen Z (2015) Impact of tropical Pacific precipitation anomaly on the East Asian upper-tropospheric westerly jet during the boreal winter. J Clim 28:6457–6474.  https://doi.org/10.1175/JCLI-D-14-00674.1 CrossRefGoogle Scholar
  14. Haigh JD (1996) The impact of solar variability on climate. Science 272:981–984.  https://doi.org/10.1126/science.272.5264.981 CrossRefGoogle Scholar
  15. Haigh JD, Blackburn M (2006) Solar influences on dynamical coupling between the stratosphere and troposphere. Space Sci Rev 125:331–344.  https://doi.org/10.1007/s11214-006-9067-0 CrossRefGoogle Scholar
  16. Haigh JD, Blackburn M, Day R (2005) The response of tropospheric circulation to perturbations in lower stratospheric temperature. J Clim 18:3672–3691.  https://doi.org/10.1175/JCLI3472.1 CrossRefGoogle Scholar
  17. Hinssen Y, van Delden A, Opsteegh T, de Geus W (2010) Stratospheric impact on tropospheric winds deduced from potential vorticity inversion in relation to the Arctic Oscillation. Q J R Meteorol Soc 136:20–29.  https://doi.org/10.1002/qj.542 CrossRefGoogle Scholar
  18. Hong X, Lu R (2016) The meridional displacement of the summer Asian jet, Silk Road pattern, and tropical SST anomalies. J Clim 29:3753–3766.  https://doi.org/10.1175/JCLI-D-15-0541.1 CrossRefGoogle Scholar
  19. Hood LL, Soukharev BE (2012) The lower stratospheric response to 11-yr solar forcing: coupling to the troposphere–ocean response. J Atmos Sci 69:1841–1863.  https://doi.org/10.1175/JAS-D-11-086.1 CrossRefGoogle Scholar
  20. Huth R, Pokorná L, Bochníček J, Hejda P (2006) Solar cycle effects on modes of low-frequency circulation variability. J Geophys Res 111:D22107.  https://doi.org/10.1029/2005JD006813 CrossRefGoogle Scholar
  21. Ineson S, Scaife AA, Knight JR, Manners JC, Dunstone NJ, Gray LJ, Haigh JD (2011) Solar forcing of winter climate variability in the Northern Hemisphere. Nat Geosci 4:753–757.  https://doi.org/10.1038/ngeo1282 CrossRefGoogle Scholar
  22. Jhun JG, Lee EJ (2004) A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J Clim 17:711–726.  https://doi.org/10.1175/1520-0442(2004)017%3C0711:ANEAWM%3E2.0.CO;2 CrossRefGoogle Scholar
  23. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471.  https://doi.org/10.1175/1520-0477(1996)077%3C0437:TNYRP%3E2.0.CO;2 CrossRefGoogle Scholar
  24. Kodera K (1995) On the origin and nature of the interannual variability of the winter stratospheric circulation in the Northern Hemisphere. J Geophys Res 100:14077–14087.  https://doi.org/10.1029/95JD01172 CrossRefGoogle Scholar
  25. Kodera K (2002) Solar cycle modulation of the North Atlantic Oscillation: implication in the spatial structure of the NAO. Geophys Res Lett 29:1218.  https://doi.org/10.1029/2001GL014557 CrossRefGoogle Scholar
  26. Kodera K (2003) Solar influence on the spatial structure of the NAO during the winter 1900–1999. Geophys Res Lett 30:1175.  https://doi.org/10.1029/2002GL016584 CrossRefGoogle Scholar
  27. Kodera K, Kuroda Y (2002) Dynamical response to the solar cycle. J Geophys Res 107:4749.  https://doi.org/10.1029/2002JD002224 CrossRefGoogle Scholar
  28. Kodera K, Kuroda Y (2005) A possible mechanism of solar modulation of the spatial structure of the North Atlantic Oscillation. J Geophys Res 110:D02111.  https://doi.org/10.1029/2004JD005258 CrossRefGoogle Scholar
  29. Kodera K, Thiéblemont R, Yukimoto S, Matthes K (2016) How can we understand the global distribution of the solar cycle signal on the Earth’s surface? Atmos Chem Phys 16:12925–12944.  https://doi.org/10.5194/acp-16-12925-2016 CrossRefGoogle Scholar
  30. Kuang X, Zhang Y (2005) Seasonal variation of the East Asian subtropical westerly jet and its association with the heating field over East Asia. Adv Atmos Sci 22:831–840.  https://doi.org/10.1007/BF02918683 CrossRefGoogle Scholar
  31. Kuroda Y, Kodera K (2005) Solar cycle modulation of the Southern Annular Mode. Geophys Res Lett 32:L13802.  https://doi.org/10.1029/2005GL022516 CrossRefGoogle Scholar
  32. Kuroda Y, Shibata K (2006) Simulation of solar-cycle modulation of the Southern Annular Mode using a chemistry-climate model. Geophys Res Lett 33:L05703.  https://doi.org/10.1029/2005GL025095 CrossRefGoogle Scholar
  33. Kuroda Y, Yamazaki K (2010) Influence of the solar cycle and QBO modulation on the Southern Annular Mode. Geophys Res Lett 37:L12703.  https://doi.org/10.1029/2010GL043252 CrossRefGoogle Scholar
  34. Kushner PJ, Polvani LM (2004) Stratosphere–troposphere coupling in a relatively simple AGCM: the role of eddies. J Clim 17:629–639.  https://doi.org/10.1175/1520-0442(2004)017%3C0629:SCIARS%3E2.0.CO;2 CrossRefGoogle Scholar
  35. Labitzke K, van Loon H (1995) Connection between the troposphere and stratosphere on a decadal scale. Tellus 47A:275–286.  https://doi.org/10.1034/j.1600-0870.1995.t01-1-00008.x CrossRefGoogle Scholar
  36. Lau KM, Boyle JS (1987) Tropical and extratropical forcing of the large-scale circulation—a diagnostic study. Mon Weather Rev 115:400–428.  https://doi.org/10.1175/1520-0493(1987)115%3C0400:TAEFOT%3E2.0.CO;2 CrossRefGoogle Scholar
  37. Lee HT (2014) Climate algorithm theoretical basis document (C-ATBD): outgoing longwave radiation (OLR)—daily. NOAA’s climate data record (CDR) program. CDRP-ATBD-0526, p 46Google Scholar
  38. Li J, Wang JXL (2003) A modified zonal index and its physical sense. Geophys Res Lett 30:1632.  https://doi.org/10.1029/2003GL017441 CrossRefGoogle Scholar
  39. Li D, Xiao Z (2018) Can solar cycle modulate the ENSO effect on the Pacific/North American pattern? J Atmos Sol Terr Phys 167:30–38.  https://doi.org/10.1016/j.jastp.2017.10.007 CrossRefGoogle Scholar
  40. Liang X, Wang W (1998) Associations between China monsoon rainfall and tropospheric jets. Q J R Meteorol Soc 124:2961–3012.  https://doi.org/10.1002/qj.49712455204 CrossRefGoogle Scholar
  41. Limpasuvan V, Hartmann DL (2000) Wave-maintained annular modes of climate variability. J Clim 13:4414–4429.  https://doi.org/10.1175/1520-0442(2000)013,4414:WMAMOC.2.0.CO;2 CrossRefGoogle Scholar
  42. Lin Z, Lu R (2005) Interannual meridional displacement of the East Asian upper-tropospheric jet stream in summer. Adv Atmos Sci 22:300–312.  https://doi.org/10.1007/BF02918519 CrossRefGoogle Scholar
  43. Liu Z, Yoshimura K, Buenning NH, He X (2014) Solar cycle modulation of the Pacific–North American teleconnection influence on North American winter climate. Environ Res Lett 9:024004.  https://doi.org/10.1088/1748-9326/9/2/024004 CrossRefGoogle Scholar
  44. Matthes K, Langematz U, Gray LL, Kodera K, Labitzke K (2004) Improved 11-year solar signal in the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM). J Geophys Res 109:D06101.  https://doi.org/10.1029/2003JD004012 CrossRefGoogle Scholar
  45. Matthes K, Kuroda Y, Kodera K, Langematz U (2006) Transfer of the solar signal from the stratosphere to the troposphere: Northern winter. J Geophys Res 111:D06108.  https://doi.org/10.1029/2005JD006283 CrossRefGoogle Scholar
  46. Meehl GA, Arblaster JM, Matthes K, Sassi F, van Loon H (2009) Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science 325:1114–1118.  https://doi.org/10.1126/science.1172872 CrossRefGoogle Scholar
  47. Misios S, Schmidt H (2013) The role of the oceans in shaping the tropospheric response to the 11 year solar cycle. Geophys Res Lett 40:6373–6377.  https://doi.org/10.1002/2013GL058439 CrossRefGoogle Scholar
  48. Nakamura H, Sampe T, Goto A, Ohfuchi W, Xie SP (2008) On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys Res Lett 35:L15709.  https://doi.org/10.1029/2008GL034010 CrossRefGoogle Scholar
  49. Oort AH, Yienger JJ (1996) Observed interannual variability in the Hadley circulation and its connection to ENSO. J Clim 9:2751–2767.  https://doi.org/10.1175/1520-0442(1996)009%3C2751:OIVITH%3E2.0.CO;2 CrossRefGoogle Scholar
  50. Park JH, An SI (2014) The impact of tropical western Pacific convection on the North Pacific atmospheric circulation during the boreal winter. Clim Dyn 43:2227–2238.  https://doi.org/10.1007/s00382-013-2047-7 CrossRefGoogle Scholar
  51. Poli P, Hersbach H, Tan D, Dee D, Thépaut J-N, Simmons A, Peubey C, Laloyaux P, Komori T, Berrisford P, Dragani R, Trémolet Y, Holm E, Bonavita M, Isaksen L, Fisher M (2013) The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C). ERA report series 14, ECMWF, p 59Google Scholar
  52. Quadrelli R, Wallace JM (2002) Dependence of the structure of the Northern Hemisphere annular mode on the polarity of ENSO. Geophys Res Lett 29:2132.  https://doi.org/10.1029/2002GL015807 CrossRefGoogle Scholar
  53. Ren X, Zhang Y, Xiang Y (2008) Connections between wintertime jet stream variability, oceanic surface heating, and transient eddy activity in the North Pacific. J Geophys Res 113:D21119.  https://doi.org/10.1029/2007JD009464 CrossRefGoogle Scholar
  54. Rind D, Lean J, Lerner J, Lonergan P, Leboissitier A (2008) Exploring the stratospheric/tropospheric response to solar forcing. J Geophys Res 113:D24103.  https://doi.org/10.1029/2008JD010114 CrossRefGoogle Scholar
  55. Roscoe HK, Haigh JD (2007) Influences of ozone depletion, the solar cycle and the QBO on the Southern Annular Mode. Q J R Meteorol Soc 133:1855–1864.  https://doi.org/10.1002/qj.153 CrossRefGoogle Scholar
  56. Ruzmaikin A (1999) Can El Nińo amplify the solar forcing of climate? Geophys Res Lett 26:2255–2259.  https://doi.org/10.1029/1999GL900535 CrossRefGoogle Scholar
  57. Scaife AA, Ineson S, Knight JR, Gray L, Kodera K, Smith DM (2013) A mechanism for lagged North Atlantic climate response to solar variability. Geophys Res Lett 40:434–439.  https://doi.org/10.1002/grl.50099 CrossRefGoogle Scholar
  58. Seager R, Harnik N, Kushnir Y, Robinson WA, Miller JA (2003) Mechanisms of hemispherically symmetric climate variability. J Clim 16(18):2960–2978.  https://doi.org/10.1175/1520-0442(2003)016%3C2960:MOHSCV%3E2.0.CO;2 CrossRefGoogle Scholar
  59. Seager R, Harnik N, Robinson WA, Kushnir Y, Ting M, Huang HP, Velez J (2005) Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Q J R Meteorol Soc 131:1501–1527.  https://doi.org/10.1256/qj.04.96 CrossRefGoogle Scholar
  60. Shindell DT, Rind D, Balachandran N, Lean J, Lonergan P (1999) Solar cycle variability, ozone, and climate. Science 284:305–308.  https://doi.org/10.1126/science.284.5412.305 CrossRefGoogle Scholar
  61. Simpson IR, Blackburn M, Haigh JD (2009) The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J Atmos Sci 66:1347–1365.  https://doi.org/10.1175/2008JAS2758.1 CrossRefGoogle Scholar
  62. Thuburn J, Craig GC (2000) Stratospheric influence on tropopause height: the radiative constraint. J Atmos Sci 57:17–28.  https://doi.org/10.1175/1520-0469(2000)057%3C0017:SIOTHT%3E2.0.CO;2 CrossRefGoogle Scholar
  63. van Loon H, Meehl GA, Arblaster JM (2004) A decadal solar effect in the tropics in July–August. J Atmos Sol Terr Phys 66:1767–1778.  https://doi.org/10.1016/j.jastp.2004.06.003 CrossRefGoogle Scholar
  64. van Loon H, Meehl G, Shea D (2007) Coupled air–sea response to solar forcing in the Pacific region during northern winter. J Geophys Res 112:D02108.  https://doi.org/10.1029/2006JD007378 CrossRefGoogle Scholar
  65. Weng H (2012) Impacts of multi-scale solar activity on climate. Part I: atmospheric circulation patterns and climate extremes. Adv Atmos Sci 29:867–886.  https://doi.org/10.1007/s00376-012-1238-1 CrossRefGoogle Scholar
  66. Xiao Z, Liao Y, Li C (2016) Possible impact of solar activity on the convection dipole over the tropical pacific ocean. J Atmos Sol Terr Phys 140:94–107.  https://doi.org/10.1016/j.jastp.2016.02.008 CrossRefGoogle Scholar
  67. Xie Z, Du Y, Yang S (2015) Zonal extension and retraction of the subtropical westerly jet stream and evolution of precipitation over East Asia and the western Pacific. J Clim 28:6783–6798.  https://doi.org/10.1175/JCLI-D-14-00649.1 CrossRefGoogle Scholar
  68. Yang S, Lau KM, Kim KM (2002) Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J Clim 15:306–325.  https://doi.org/10.1175/1520-0442(2002)015%3C0306:VOTEAJ%3E2.0.CO;2 CrossRefGoogle Scholar
  69. Zhou Q, Chen W, Zhou W (2013) Solar cycle modulation of the ENSO impact on the winter climate of East Asia. J Geophys Res Atmos 118:5111–5119.  https://doi.org/10.1002/jgrd.50453 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations