Advertisement

Climate Dynamics

, Volume 52, Issue 9–10, pp 5115–5125 | Cite as

An ENSO-induced aerosol dipole in the west-central Pacific and its potential feedback to ENSO evolution

  • Li XuEmail author
  • Jin-Yi Yu
Article

Abstract

We examine the impact of El Niño–Southern Oscillation (ENSO) on satellite observed aerosol optical depths (AODs) over the equatorial Pacific. AODs are found to decrease close to the International Dateline and increase in the vicinity of the Maritime Continent during the El Niño developing phase (and vice versa during La Niña) to form an AOD dipole. The positive AOD anomaly over the Maritime Continent is caused by increases in fire-induced fine smoke aerosols in Indonesia and coarse dust particles transported from Australia via the strengthening winds when El Niño develops and affects the Pacific walker circulation. The negative AOD anomaly around the International Dateline is caused by decreases in the emission of marine aerosols, as the developing El Niño is associated with weakening surface wind speeds in the region. This aerosol dipole is found particularly strong during the Central-Pacific type of ENSO, which has most of its sea surface temperature and wind variations around the International Dateline. The Eastern-Pacific type of ENSO produces positive AOD anomalies over the Maritime Continent but weaker negative AOD anomalies near the International Dateline. As a result, the AOD dipole is less obvious during the EP ENSO. The shortwave radiative forcing associated with the aerosol dipole is 29% (21%) as large as the ENSO-induced outgoing longwave radiation in the Maritime Continent (International Dateline) region and represents an important positive feedback to help sustain the ENSO development that may be potentially important in Central Pacific ENSO studies and predictions.

Keywords

Aerosol dipole ENSO Aerosol shortwave radiative forcing Outgoing longwave radiation Equatorial Pacific 

Notes

Acknowledgements

We thank two anonymous reviewers for their valuable comments. This research was supported by the National Science Foundation’s Climate and Large Scale Dynamics Program under Grant AGS-1505145. L. X. is grateful for the support from the Department of Energy’s Earth System Modeling Program under Grant DE-SC0016362. The MODIS aerosol optical depth data is downloaded from https://ladsweb.modaps.eosdis.nasa.gov, the SeaWiFS aerosol optical depth data from https://measures.gsfc.nasa.gov/data/DeepBlueSeaWiFS_Level3/, the NCEP/NCAR Reanalysis data set, the outgoing longwave radiation data and the Niño 3.4 index from https://www.esrl.noaa.gov/psd/.

References

  1. Abish B, Mohanakumar K (2013) Absorbing aerosol variability over the Indian subcontinent and its increasing dependence on ENSO. Glob Planet Change 106:13–19CrossRefGoogle Scholar
  2. Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230CrossRefGoogle Scholar
  3. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 18:820–829Google Scholar
  4. Chandra S, Ziemke JR, Min JR, Read WG (1998) Effects of 1997–1998 El Niño on tropospheric ozone and water vapor. Geophys Res Lett 25:3867–3870.  https://doi.org/10.1029/98GL02695 CrossRefGoogle Scholar
  5. Chandra S, Ziemke JR, Duncan BN, Diehl TL, Livesey NJ, Froidevaux L (2009) Effects of the 2006 El Niño on tropospheric ozone and carbon monoxide: implications for dynamics and biomass burning. Atmos Chem Phys 9:4239–4249.  https://doi.org/10.5194/acp-9-4239-2009 CrossRefGoogle Scholar
  6. Chen Y, Morton DC, Andela N, van der Werf GR, Giglio L, Randerson JT (2017) A pan-tropical cascade of fire driven by El Niño/Southern oscillation. Nat Clim Change 7:906–911CrossRefGoogle Scholar
  7. Chiodi AM, Harrison DE (2010) Characterizing warm-ENSO variability in the equatorial Pacific: an OLR perspective. J Clim 23:2428–2439CrossRefGoogle Scholar
  8. Chiodi AM, Harrison DE (2013) El Niño impacts on seasonal U.S. atmospheric circulation, temperature, and precipitation anomalies: the OLR-event perspective. J Clim 26:822–837.  https://doi.org/10.1175/JCLI-D-12-00097.1 CrossRefGoogle Scholar
  9. Chrastansky A, Rotstayn LD (2012) The effect of ENSO-induced rainfall and circulation changes on the direct and indirect radiative forcing from Indonesian biomass-burning aerosols. Atmos Chem Phys 12:11395–11416.  https://doi.org/10.5194/acp-12-11395-2012 CrossRefGoogle Scholar
  10. Christopher SA, Zhang J (2002) Shortwave aerosol radiative forcing from MODIS and CERES observations over the oceans. Geophys Res Lett 29(18):1859.  https://doi.org/10.1029/2002GL014803 CrossRefGoogle Scholar
  11. Christopher SA, Chou J, Zhang J, Li X, Welch RM (2000) Shortwave direct radiative forcing of biomass burning aerosols estimated from VIRS and CERES. Geophys Res Lett 27:2197–2200CrossRefGoogle Scholar
  12. Chung CE, Ramanathan V (2003) South Asian haze forcing: remote impacts with implications to ENSO and AO. J Clim 16:1791–1806CrossRefGoogle Scholar
  13. Chung CE, Ramanathan V, Kiehl JT (2002) Effects of the South Asian absorbing haze on the northeast monsoon and surface-air heat exchange. J Clim 15:2462–2476CrossRefGoogle Scholar
  14. Duncan BN, Bey I, Chin M, Mickley LJ, Fairlie TD, Martin RV, Matsueda H (2003) Indonesia wildfires of 1997: impact on tropospheric chemistry. J Geophys Res 108:4458.  https://doi.org/10.1029/2002JD003195 CrossRefGoogle Scholar
  15. Enfield DB (1989) El Niño, past and present. Rev Geophys 27(1):159–187.  https://doi.org/10.1029/RG027i001p00159 CrossRefGoogle Scholar
  16. Feng J, Li J, Zhu J, Liao H, Yang Y (2017) Simulated contrasting influences of two La Niña Modoki events on aerosol concentrations over eastern China. J Geophys Res Atmos 122:2734–2749.  https://doi.org/10.1002/2016JD026175 CrossRefGoogle Scholar
  17. Gong SL, Zhang XY, Zhao TL, Zhang XB, Barrie LA, McKendry IG, Zhao CS (2006) A simulated climatology of Asian Dust aerosol and its trans-Pacific transport. Part II: interannual variability and climate connections. J Clim 19:104–122.  https://doi.org/10.1175/JCLI3606.1 CrossRefGoogle Scholar
  18. Hsu NC, Tsay SC, King MD, Herman JR (2006) Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Trans Geosci Remote 44:3180–3195.  https://doi.org/10.1109/TGRS.2006.879540 CrossRefGoogle Scholar
  19. Inness A, Benedetti A, Flemming J, Huijnen V, Kaiser JW, Parrington M, Remy S (2015) The ENSO signal in atmospheric composition fields: emission-driven versus dynamically induced changes. Atmos Chem Phys 15:9083–9097.  https://doi.org/10.5194/acp-15-9083-2015 CrossRefGoogle Scholar
  20. Kalnay VE et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  21. Kao H-Y, Yu J-Y (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim 22:615–632.  https://doi.org/10.1175/2008JCLI2309.1 CrossRefGoogle Scholar
  22. Kim M-K, Lau WK-M, Kim K-M et al (2016) Amplification of ENSO effects on Indian summer monsoon by absorbing aerosols. Clim Dyn 46:2657–2671.  https://doi.org/10.1007/s00382-015-2722-y CrossRefGoogle Scholar
  23. Lau WKM (2016) The aerosol-monsoon climate system of Asia: a new paradigm. J Meteorol Res 30(1):001–011.  https://doi.org/10.1007/s13351-015-5999-1 CrossRefGoogle Scholar
  24. Le Page Y, Pereira JMC, Trigo R, da Camara C, Oom D, Mota B (2008) Global fire activity patterns (1996–2006) and climatic influence: an analysis using the World Fire Atlas. Atmos Chem Phys 8:1911–1924.  https://doi.org/10.5194/acp-8-1911-2008 CrossRefGoogle Scholar
  25. Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603.  https://doi.org/10.1029/2010GL044007 Google Scholar
  26. Levy RC, Remer LA, Dubovik O (2007a) Global aerosol optical properties and application to moderate resolution imaging spectroradiometer aerosol retrieval over land. J Geophys Res Atmos 112:D13210.  https://doi.org/10.1029/2006JD007815 CrossRefGoogle Scholar
  27. Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ (2007b) Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. J Geophys Res Atmos 112:D13211.  https://doi.org/10.1029/2006JD007811 CrossRefGoogle Scholar
  28. Li J, Carlson BE, Lacis AA (2011) El Niño–Southern Oscillation correlated aerosol Ångström exponent anomaly over the tropical Pacific discovered in satellite measurements. J Geophys Res 116:D20204.  https://doi.org/10.1029/2011JD015733 CrossRefGoogle Scholar
  29. Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277Google Scholar
  30. Liu Y, Liu J, Tao S (2013) Interannual variability of summertime aerosol optical depth over East Asia during 2000–2011: a potential influence from El Niño–Southern Oscillation. Environ Res Lett 8:044034CrossRefGoogle Scholar
  31. Logan JA, Megretskaia I, Nassar R, Murray LT, Zhang L, Bowman KW, Worden HM, Luo M (2008) Effects of the 2006 El Niño on tropospheric composition as revealed by data from the tropospheric emission spectrometer (TES). Geophys Res Lett 35:L03816.  https://doi.org/10.1029/2007GL031698 CrossRefGoogle Scholar
  32. Mitchell RM, Campbell SK, Qin Y (2010) Recent increase in aerosol loading over the Australian arid zone. Atmos Chem Phys 10:1689–1699.  https://doi.org/10.5194/acp-10-1689-2010 CrossRefGoogle Scholar
  33. Paek H, Yu J-Y, Qian C (2017) Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys Res Lett 44:1848–1856.  https://doi.org/10.1002/2016GL071515 Google Scholar
  34. Penner JE et al (2001) Aerosols, their direct and indirect effects. In: Houghton JT et al (eds) Climate change 2001: the scientific basis, contribution of working group I to the third assessment report of the intergovernmental panel on climate change, Chap 5. Cambridge University Press, Cambridge, pp 289–348Google Scholar
  35. Podgorny IA, Li F, Ramanathan V (2003) Large aerosol radiative forcing due to the 1997 Indonesian forest fire. Geophys Res Lett 30:1028.  https://doi.org/10.1029/2002GL015979 Google Scholar
  36. Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124.  https://doi.org/10.1126/science.1064034 CrossRefGoogle Scholar
  37. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Nino. Mon Weather Rev 110:354–384CrossRefGoogle Scholar
  38. Reid JS et al (2013) Observing and understanding the Southeast Asian aerosols by remote sensing: an initial review and analysis for the Seven Southeast Asian Studies (7 SEAS) program. Atmos Res 122:303–468.  https://doi.org/10.1016/j.atmosres.2012.06.005 CrossRefGoogle Scholar
  39. Rosenfeld D (1999) TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys Res Lett 26(20):3105–3108.  https://doi.org/10.1029/1999GL006066 CrossRefGoogle Scholar
  40. Rosenfeld D, Axisa D, Woodley WL, Lahav R (2010) A quest for effective hygroscopic cloud seeding. J Appl Meteorol Climatol 49(7):1548–1562.  https://doi.org/10.1175/2010JAMC2307.1 CrossRefGoogle Scholar
  41. Rosenfeld D, Clavner M, Nirel R (2011) Pollution and dust aerosols modulating tropical cyclones intensities. Atmos Res 102(1–2):66–76.  https://doi.org/10.1016/j.atmosres.2011.06.006 CrossRefGoogle Scholar
  42. Rotstayn LD, Collier MA, Dix MR, Feng Y, Gordon HB, O’Farrell SP, Smith IN, Syktus J (2010) Improved simulation of Australian climate and ENSO-related climate variability in a GCM with an interactive aerosol treatment. Int J Climatol 30:1067–1088.  https://doi.org/10.1002/joc.1952 Google Scholar
  43. Rotstayn LD, Jeffrey SJ, Collier MA, Dravitzki SM, Hirst AC, Syktus JI, Wong KK (2012) Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys 12:6377–6404.  https://doi.org/10.5194/acp-12-6377-2012 CrossRefGoogle Scholar
  44. Sayer AM, Munchak LA, Hsu NC, Levy RC, Bettenhausen C, Jeong M-J (2014) MODIS Collection 6 aerosol products: comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J Geophys Res Atmos 119:13965–13989.  https://doi.org/10.1002/2014JD022453 Google Scholar
  45. Takahashi C, Watanabe M (2016) Pacific trade winds accelerated by aerosol forcing over the past two decades. Nat Clim Change 6:768–772CrossRefGoogle Scholar
  46. Twomey S (1974) Pollution and the planetary albedo. Atmos Environ 8:1251–1256CrossRefGoogle Scholar
  47. van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano Jr AF (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6:3423–3441.  https://doi.org/10.5194/acp-6-3423-2006 CrossRefGoogle Scholar
  48. Wang C (2007) Impact of direct radiative forcing of black carbon aerosols on tropical convective precipitation. Geophys Res Lett 34(5):L05709.  https://doi.org/10.1029/2006GL028416 CrossRefGoogle Scholar
  49. Wang C, Wang X (2013) Classifying El Niño Modoki I and II by different impacts on rainfall in Southern China and typhoon tracks. J Clim 26:1322–1338.  https://doi.org/10.1175/JCLI-D-12-00107.1 CrossRefGoogle Scholar
  50. Wang X, Tan W, Wang C (2018) A new index for identifying different types of El Niño Modoki events. Clim Dyn 50:2753–2765.  https://doi.org/10.1007/s00382-017-3769-8 CrossRefGoogle Scholar
  51. Wu R, Wen Z, He Z (2013) ENSO contribution to aerosol variations over the maritime continent and the Western North Pacific during 2000–10. J Clim 26:6541–6560.  https://doi.org/10.1175/JCLI-D-12-00253.1 CrossRefGoogle Scholar
  52. Xu L, Pierce DW, Russell LM, Miller AJ, Somerville RCJ, Twohy CH, Ghan SJ, Singh B, Yoon J-H, Rasch PJ (2015) Interannual to decadal climate variability of sea salt aerosols in the coupled climate model CESM1.0. J Geophys Res Atmos 120:1502–1519.  https://doi.org/10.1002/2014JD022888 CrossRefGoogle Scholar
  53. Xu L, Cameron-Smith P, Russell LM, Ghan SJ, Liu Y, Elliott S, Yang Y, Lou S, Lamjiri MA, Manizza M (2016) DMS role in ENSO cycle in the tropics. J Geophys Res Atmos 121:13537–13558.  https://doi.org/10.1002/2016JD025333 Google Scholar
  54. Xu L, Yu J-Y, Schnell JL, Prather MJ (2017) The seasonality and geographic dependence of ENSO impacts on U.S. surface ozone variability. Geophys Res Lett 44:3420–3428.  https://doi.org/10.1002/2017GL073044 CrossRefGoogle Scholar
  55. Yang Y, Russell L, Lou S, Lamjiri MA, Liu Y, Singh B, Ghan S (2016) Changes in sea salt emissions enhance ENSO variability. J Clim 29:8575–8588.  https://doi.org/10.1175/JCLI-D-16-0237.1 CrossRefGoogle Scholar
  56. Yu J-Y, Kao H-Y (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J Geophys Res 112:D13106.  https://doi.org/10.1029/2006JD007654 CrossRefGoogle Scholar
  57. Yu J-Y, Zou Y, Kim ST, Lee T (2012) The changing impact of El Niño on US winter temperatures. Geophys Res Lett 39:L15702.  https://doi.org/10.1029/2012GL052483 CrossRefGoogle Scholar
  58. Zhao S, Zhang H, Xie B (2018) The effects of El Niño–Southern Oscillation on the winter haze pollution of China. Atmos Chem Phys 18:1863–1877.  https://doi.org/10.5194/acp-18-1863-2018 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth System ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations