Advertisement

Upper tropospheric ozone transport from the sub-tropics to tropics over the Indian region during Asian summer monsoon

  • Siddarth Shankar DasEmail author
  • K. V. Suneeth
  • M. Venkat Ratnam
  • I. A. Girach
  • Subrata Kumar Das
Article

Abstract

In this study, we investigate the role of the Asian summer monsoon (ASM) anticyclone in the distribution of ozone over the southern India and tropical Indian Ocean. We present the horizontal and vertical structure of ozone in the upper troposphere and lower stratosphere (UTLS) region. The analysis shows that the region within the ASM anticyclone has low ozone, and high tropopause altitude, as compared to the region outside the anticyclone during boreal summer. The southern edge of the ASM anticyclone, i.e. the southern India and tropical Indian Ocean show a remarkably high ozone concentration in the UTLS region during summer. Analysis of daily fields shows that ozone concentration in the upper troposphere over the southern India and tropical Indian Ocean increases with the strength of the tropical easterly jet, which is an outcome of ASM circulation. Different mechanisms responsible for the ozone enhancement in the UTLS region over the tropical Indian region have been discussed in this paper. The in situ ozonesonde observations from six Indian stations also support the space-based Aura-MLS observations, concluding that ASM anticyclone effectively transports ozone from the mid-latitude stratosphere to deep tropics. Shear generated turbulence and mixing in the vicinity of easterly jet also likely to play a minor role in the local ozone distribution.

Keywords

Ozone Tibetan Plateau Asian Summer Monsoon Aura-MLS COSMIC 

Notes

Acknowledgements

Authors would like to acknowledge Goddard Earth Sciences Data and Information Services Centre and UCAR/CDAAC team for providing the Aura-MLS and COSMIC data, respectively. Thanks are also due to ECMWF for providing the ERA-Interim and India Meteorological Department for ozonesonde data. One of the author KVS thankful to Indian Space Research Organization (ISRO) for providing doctoral fellowship during this study period. Author gratefully acknowledges both the reviewers and Editor for their valuable comments and suggestions for the improvement of the manuscript. The gridded data used in the present study can be obtained on request.

References

  1. Alexander G, Chatterjee K (1980) Atmospheric ozone measurements in India. Proc Indian Natl Sci Acad 46:234–244Google Scholar
  2. Alexander P, Torre A, Llamedo P, Hierro R (2014) Precision estimation in temperature and refractivity profiles retrieved by GPS radio occultations. J Geophys Res 119:8624–8638.  https://doi.org/10.1002/2013JD021016 CrossRefGoogle Scholar
  3. Baray JL, Ancellet G, Randriambelo T, Baldy S (1999) Tropical cyclone Marlene and stratosphere–troposphere exchange. J Geophys Res 104:13953–13970.  https://doi.org/10.1029/1999JD900028 CrossRefGoogle Scholar
  4. Bian J, Pan LL, Paulik L, Vömel H, Chen H, Lu D (2012) In situ water vapor and ozone measurements in Lhasa and Kunming during the Asian summer monsoon. Geophys Res Lett 39:L19808.  https://doi.org/10.1029/2012GL052996 CrossRefGoogle Scholar
  5. Bourqui MS, Trepanier PY (2010) Descent of deep stratospheric intrusions during the IONS August 2006 campaign. J Geophys Res 115:D18301.  https://doi.org/10.1029/2009JD013183 CrossRefGoogle Scholar
  6. Cairo F, Buontempo C, MacKenzie AR, Schiller C, Volk CM, Adriani A, Mitev V, Matthey R, Di Donfrancesco G, Oulanovsky A, Ravegnani F, Yushkov V, Snels M, Cagnazzo C, Stefanutti L (2008) Morphology of the tropopause layer and lower stratosphere above a tropical cyclone: a case study on cyclone Davina (1999). Atmos Chem Phy 8:3411–3426.  https://doi.org/10.5194/acp-8-3411-2008 CrossRefGoogle Scholar
  7. Chakrabarty DK, Shah NC, Pandya KV, Peshin SK (2000) Long term trend of tropopause over New Delhi and Thiruvananthapuram. Geophys Res Lett 27(2184):2181.  https://doi.org/10.1029/2000GL011463 CrossRefGoogle Scholar
  8. Das SS (2009) A new perspective on MST radar observations of stratospheric intrusions into troposphere associated with tropical cyclone. Geophys Res Lett 36:L15821.  https://doi.org/10.1029/2009GL039184 CrossRefGoogle Scholar
  9. Das SS, Sijikumar S, Uma KN (2011) Further investigation on stratospheric air intrusion into the troposphere during the episode of tropical cyclone: numerical simulation and MST radar observations. Atmos Res 101:928–937.  https://doi.org/10.1016/j.atmosres.2011.05.023 CrossRefGoogle Scholar
  10. Das SS, Ratnam MV, Uma KN, Patra AK, Subrahmanyam KV, Girach IA, Suneeth KV, Kumar KK, Ramkumar G (2016a) Stratospheric intrusion into the troposphere during the tropical cyclone Nilam (2012). Q J R Meteorol Soc 142:2168–2179.  https://doi.org/10.1002/qj.2810 CrossRefGoogle Scholar
  11. Das SS, Ratnam MV, Uma KN, Subrahmanyam KV, Girach IA, Patra AK, Aneesh S, Suneeth KV, Kumar KK, Kesarkar AP, Sijikumar S, Ramkumar G (2016b) Influence of tropical cyclones on tropospheric ozone: possible implications. Atmos Chem Phys 16:1–11.  https://doi.org/10.5194/acp-16-1-2016 CrossRefGoogle Scholar
  12. Das SS, Uma KN, Bineesha VN, Suneeth KV, Ramkumar G (2016c) Four decadal climatological intercomparison of Rocketsonde and Radiosonde with different reanalysis data: results from Thumba Equatorial Station. Q J R Meteorol Soc 142:91–101.  https://doi.org/10.1002/qj.2632 doiCrossRefGoogle Scholar
  13. Davies TD, Schuepbach E (1994) Episodes of high ozone concentration at the earth’s surface resulting from transport down from the upper troposphere–lower stratosphere: a review and case studies. Atmos Environ 28:53–68.  https://doi.org/10.1016/1352-2310(94)90022-1 CrossRefGoogle Scholar
  14. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, H´olm EV, Isaksen L, K°allberg P, K¨ohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Th´epaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597.  https://doi.org/10.1002/qj.828 CrossRefGoogle Scholar
  15. Deshler T, Mercer JL, Smit HGJ, Stubi R, Levrat G, Johnson BJ, Oltmans SJ, Kivi R, Thompson AM, Witte J, Davies J, Schmidlin FJ, Brothers G, Sasaki T (2008) Atmospheric comparison of electrochemical cell ozonesondes from different manufacturers, and with different cathode solution strengths: the Balloon Experiment on Standards for Ozone sondes. J Geophys Res 113:D04307.  https://doi.org/10.1029/2007JD008975 CrossRefGoogle Scholar
  16. Duan AM, Wu GX (2005) Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim Dyn 24:793.  https://doi.org/10.1007/s00382-004-0488-8 CrossRefGoogle Scholar
  17. Dunkerton TJ (1995) Evidence of meridional motion in the summer lower stratosphere adjacent to monsoon regions. J Geophys Res 100:16675–16688.  https://doi.org/10.1029/95JD01263 CrossRefGoogle Scholar
  18. Fadnavis S, Chakraborty T, Beig G (2010) Seasonal stratospheric intrusion of ozone in the upper troposphere over India. Ann Geophys 28:2149–2159.  https://doi.org/10.5194/angeo-28-2149-2010 CrossRefGoogle Scholar
  19. Fadnavis S, Dhomse S, Ghude S, Iyer U, Buchunde P, Sonbawne S, Raj PE (2012) Ozone trends in the vertical structure of upper troposphere and lower stratosphere over the Indian monsoon region. Int J Environ Sci Technol.  https://doi.org/10.1007/s13762-013-0258-4 Google Scholar
  20. Feng S, Fu Y, Xiao Q (2011) Is the tropopause higher over the Tibetan Plateau? Observational evidence from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) data. J Geophys Res 116:D21121.  https://doi.org/10.1029/2011JD016140 CrossRefGoogle Scholar
  21. Fishman J, Seiler W (1983) Correlative nature of ozone and carbon monoxide in the troposphere: implications for the tropospheric ozone budget. J Geophys Res 88(C6):3662–3670.  https://doi.org/10.1029/JC088iC06p03662 CrossRefGoogle Scholar
  22. Fu R, Hu Y, Wright JS, Jiang JH, Dickinson RE, Chen M, Filipiak M, Read WG, Waters JW, Wu DL (2006) Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc Natl Acad Sci USA 103:5664–5669.  https://doi.org/10.1073/pnas.0601584103 CrossRefGoogle Scholar
  23. Gettelman A, Forster PMdeF, Fujiwara M, Fu Q, Vömel H, Gohar LK, Johanson C, Ammerman M (2004) Radiation balance of the tropical tropopause layer. J Geophys Res 109:D07103.  https://doi.org/10.1029/2003JD004190 Google Scholar
  24. Glanville A, Birner T (2017) Role of vertical and horizontal mixing in the tape recorder signal near the tropical tropopause. Atmos Chem Phys 17:4337–4353.  https://doi.org/10.5194/acp-17-4337-2017 CrossRefGoogle Scholar
  25. Hajj GA, Ao CO, Iijima BA, Kuang D, Kursinski ER, Mannucci AJ, Meehan TK, Romans LJ, de la Torre Juarez M, Yunck TP (2004) CHAMP and SAC-C atmospheric occultation results and intercomparison. J Geophys Res 109:06109.  https://doi.org/10.1029/2003JD003909 CrossRefGoogle Scholar
  26. Holton JR, Haynes PT, Mclntyre ME (1995) Stratosphere–troposphere exchange. Rev Geophys 33:403:439.  https://doi.org/10.1029/95RG02097 CrossRefGoogle Scholar
  27. Hoor P, Fischer H, Lange L, Lelieveld J, Brunner D (2002) Seasonal variations of mixing layer in the lowermost stratosphere as identified by the CO–O3 correlation from in situ measurements. J Geophys Res 107D(5):4044.  https://doi.org/10.1029/2000JD000289 Google Scholar
  28. Jacobson MZ (2005) Fundamental of atmospheric modeling. Cambridge University Press, New York (ISBN-13 978-o-511-11115-o) CrossRefGoogle Scholar
  29. Jiang YC, Zhao TL, Liu J, Xu XD, Tan CH, Cheng XH, Bi XY, Gan JB, You JF, Zhao SZ (2015) Why does surface ozone peak before a typhoon landing in southeast China? Atmos Chem Phys 15:13331–13338.  https://doi.org/10.5194/acp-15-13331-2015 CrossRefGoogle Scholar
  30. Johnson FS (1975) Transport processes in the upper atmosphere. J Atmos Sci 32:1658–1662.  https://doi.org/10.1175/1520-0469(1975)032%3C1658:TPITUA%3E2.0.CO;2 CrossRefGoogle Scholar
  31. Kerr JB, Fast H, McElroy CT, Oltmans SJ, Lathrop JA, Kyro E, Paukkunen A, Claude H, Köhler U, Sreedharan CR, Takao T, Tsukagoshi Y (1994) The 1991 WMO international ozonesonde intercomparison at Vanscoy. Can Atmos Ocean 32:685–716.  https://doi.org/10.1080/07055900.1994.9649518 CrossRefGoogle Scholar
  32. Kim J, Son SW (2012) Tropical Cold-point tropopause: climatology, seasonal cycle, and intraseasonal variability derived from COSMIC GPS radio occultation measurements. J Clim 25:5343–5360.  https://doi.org/10.1175/JCLI-D-11-00554.1 CrossRefGoogle Scholar
  33. Kim YK, Lee HW, Park JK, Moon YS (2002) The stratosphere–troposphere exchange of ozone and aerosols over Korea. Atmos Environ 36:449–463.  https://doi.org/10.1016/S1352-2310(01)00370-3 CrossRefGoogle Scholar
  34. Kizu N, Sugidachi T, Kobayashi E, Hoshino S, Shimizu K, Maeda R, Fujiwara M (2018) Technical characteristics and GRUAN data processing for the Meisei RS-11G and iMS-100 radiosondes, GRUAN-TD-5, p 152. https://www.gruan.org/documentation/gruan/td/graun-td-5/
  35. Komhyr WD, Barnes RA, Brothers GB, Lathrop JA, Opperman DP (1995) Electrochemical concentration cell ozonesonde performance evaluation during STOIC 1989. J Geophys Res 100:9231–9244.  https://doi.org/10.1029/94JD02175 CrossRefGoogle Scholar
  36. Konopka P, Grooß JU, Gunther G, Ploeger F, Pommrich R, Muller R, Livesey N (2010) Annual cycle of ozone at and above the tropical tropopause: observations versus simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS). Atmos Chem Phys 10:121–132.  https://doi.org/10.5194/acp-10-121-2010 CrossRefGoogle Scholar
  37. Kucharski F, Bracco A, Barimalala R, Yoo JH (2010) Contribution of the east–west thermal heating contrast to the South Asian monsoon and consequences for its variability. Clim Dyn 37:721–735.  https://doi.org/10.1007/s00382-010-0858-3 CrossRefGoogle Scholar
  38. Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’s atmosphere with radio occultation measurements using the global positioning system. J Geophys Res 102:23429–23465.  https://doi.org/10.1029/97JD01569 CrossRefGoogle Scholar
  39. Lal S, Venkataramani S, Chandra N, Cooper OR, Brioude J, Naja M (2014) Transport effects on the vertical distribution of tropospheric ozone over western India. J Geophys Res 119:10012–10026.  https://doi.org/10.1002/2014JD021854 Google Scholar
  40. Lambert A, Read W, Livesey N (2015) MLS/Aura Level 2 water vapor (H2O) mixing ratio V004, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC).  https://doi.org/10.5067/Aura/MLS/DATA2009
  41. Lau M, Kim MK, Kim M (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26:855–864.  https://doi.org/10.1007/s00382-006-0114-z CrossRefGoogle Scholar
  42. Liu YM, Wu GX, Liu H, Liu P (2001) Condensation heating of the Asian summer monsoon and the subtropical anticyclone in the Eastern Hemisphere. Clim Dyn 17:327–338.  https://doi.org/10.1007/s003820000117 CrossRefGoogle Scholar
  43. Liu Y, Wu G, Hong J, Dong B, Duan A, Bao Q, Zhou L (2012) Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change Clim Dyn 39:1183.  https://doi.org/10.1007/s00382-012-1335-y CrossRefGoogle Scholar
  44. Livesey NJ, Read WG, Wagner PA, Froidevaux L, Lambert A, Manney GL, Valle LFM, Pumphrey HC, Santee ML, Schwartz MJ, Wang S, Fuller RA, Jarnot RF, Knosp BW, Martinez E (2015) Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) version V4.2x level 2 data quality and description document. Jet Propul Lab Pasadena, CA. JPL D-33509 Rev. A. http://mls.jpl.nasa.gov
  45. Munchak LA, Pan LL (2014) Separation of the lapse rate and the cold point tropopauses in the tropics and the resulting impact on cloud top tropopause relationships. J Geophys Res 119:7963–7978.  https://doi.org/10.1002/2013JD021189 CrossRefGoogle Scholar
  46. Murphy EA, D’agostino RB, Noonan JP (1982) Patterns in the occurrence of Richardson numbers less than unity in the lower atmosphere. J Appl Meteorol 21:321–333.  https://doi.org/10.1175/1520-0450(1982)021%3C0321:PITOOR%3E2.0.CO;2 CrossRefGoogle Scholar
  47. Nash J, Oakley T, Vomel H, Wei L (2011) WMO Intercomparison of High Quality Radiosonde Systems Yangjiang, China, 12 July – 3 August 2010, Technical report, WMO/TD-No. 1580, instruments and observing methods Report, No. 107. https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-107_Yangjiang/IOM 107_Yangjiang.zip, https://library.wmo.int/opac/index.php?lvl=notice_display&id=15531#
  48. Ojha N, Naja M, Sarangi T, Kumar R, Bhardwaj P, Lal S, Venkataramani S, Sagar R, Kumar A, Chandola HC (2014) On the processes influencing the vertical distribution of ozone over the central Himalayas: analysis of yearlong ozonesonde observations. Atmos Environ 88:201–211.  https://doi.org/10.1016/j.atmosenv.2014.01.031 CrossRefGoogle Scholar
  49. Pan LL, Homeyer CR, Honomichl S, Ridley BA, Weisman M, Barth MC, Hair JW, Fenn MA, Butler C, Diskin GS, Crawford JH, Ryerson TB, Pollack I, Peischl J, Huntrieser H (2015) Thunderstorms enhance tropospheric ozone by wrapping and shedding stratospheric air. Geophy Res Lett 41:7785–7790.  https://doi.org/10.1002/2014gl061921 CrossRefGoogle Scholar
  50. Park M, Randel WJ, Kinnison DE, Garcia RR, Choi W (2004) Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: satellite observations and model simulations. J Geophys Res 109:D03302.  https://doi.org/10.1029/2003JD003706 Google Scholar
  51. Park M, Randel WJ, Gettelman A, Massie ST, Jiang JH (2007) Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J Geophys Res 112:D16309.  https://doi.org/10.1029/2006JD008294 CrossRefGoogle Scholar
  52. Raj STA, Venkat Ratnam M, Rao DN, Krishna Murthy BV (2015) Vertical distribution of ozone over a tropical station: seasonal variation and comparison with satellite (MLS, SABER) and ERA-Interim products. Atmos Environ 116:281–292.  https://doi.org/10.1016/j.atmosenv.2015.06.047 CrossRefGoogle Scholar
  53. Raman RM, Rao VVMJ, Ratnam MV, Rajeevan M, Rao SVB, Rao DN, Rao NP (2009) Characteristics of the tropical easterly jet: long-term trends and their features during active and break monsoon phases. J Geophys Res 114:D19105.  https://doi.org/10.1029/2009JD012065 CrossRefGoogle Scholar
  54. Randel WJ, Jensen EJ (2013) Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat Geosci 6:169–176.  https://doi.org/10.1038/ngeo1733 CrossRefGoogle Scholar
  55. Randel WJ, Park M (2006) Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with AIRS. J Geophys Res 111:D12314.  https://doi.org/10.1029/2005JD006490 CrossRefGoogle Scholar
  56. Randel WJ, Wu F (2015) Variability of zonal mean tropical temperatures derived from a decade of GPS radio occultation data. J Atmos Sci 72:1261–1275.  https://doi.org/10.1175/JAS-D-14-0216.1 CrossRefGoogle Scholar
  57. Randel WJ, Wu F, Vömel H, Nedoluha GE, Forster P (2006) Decreases in stratospheric water vapor after 2001: links to changes in the tropical tropopause and the Brewer–Dobson circulation. J Geophys Res 111:D12312.  https://doi.org/10.1029/2005JD006744 CrossRefGoogle Scholar
  58. Randel WJ, Park M, Wu F, Livesey N (2007) A large annual cycle in ozone above the tropical tropopause linked to the Brewer–Dobson circulation. J Atmos Sci 64:4479–4488, doiCrossRefGoogle Scholar
  59. Saraf N, Beig G (2004) Long-term trends in tropospheric ozone over the Indian tropical region. Geophys Res Lett 31:L05101.  https://doi.org/10.1029/2003GL018516 CrossRefGoogle Scholar
  60. Sathiyamoorthy V, Pal PK, Joshi PC (2007) Intraseasonal variability of the tropical easterly jet. Meteorol Atmos Phys 96:305–316.  https://doi.org/10.1007/s00703-006-0214-7 CrossRefGoogle Scholar
  61. Schwartz M, Froidevaux L, Livesey N, Read W (2015) MLS/Aura Level 2 ozone (O3) mixing ratio V004, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC).  https://doi.org/10.5067/Aura/MLS/DATA2017
  62. Škerlak B, Sprenger M, Wernli H (2014) A global climatology of stratosphere–troposphere exchange using the ERA-Interim data set from 1979 to 2011. Atmos Chem Phys 14:913–937.  https://doi.org/10.5194/acp-14-913-2014 CrossRefGoogle Scholar
  63. Sprenger M, Wernli H (2003) A northern hemispheric climatology of cross-tropopause exchange for the ERA15 time period (1979–1993). J Geophys Res 108:D12.  https://doi.org/10.1029/2002JD002636 Google Scholar
  64. Sreedharan CR (1968) An Indian electrochemical ozonesonde. J Phys E Sci Inst Sr 2:995–997CrossRefGoogle Scholar
  65. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96:2059–2077.  https://doi.org/10.1175/BAMS-D-14-00110.1 CrossRefGoogle Scholar
  66. Steinbrecht W, Claude H, Schonenborn F, Leiterer U, Dier H, Lanzinger E (2008) Pressure and temperature differences between Vaisala RS80 and RS92 radiosonde systems. J Atmos Ocean Tech 25:909–927.  https://doi.org/10.1175/2007JTECHA999.1 CrossRefGoogle Scholar
  67. Stohl A, Wernli H, Bourqui M, Forster C, James P, Liniger MA, Seibert P, Sprenger M (2003) A new perspective of stratosphere–troposphere exchange. Bull Am Meteorol Soc 84:1565–1573.  https://doi.org/10.1175/BAMS-84-11-1565 CrossRefGoogle Scholar
  68. Stolarski RS, Waugh DW, Wang L, Oman LD, Douglass AR, Newman PA (2014) Seasonal variation of ozone in the tropical lower stratosphere: southern tropics are different from northern tropics. J Geophys Res 119:6196–6206.  https://doi.org/10.1002/2013JD021294 Google Scholar
  69. Suneeth KV, Das SS, Das SK (2017) Diurnal variability of the global tropical tropopause: results inferred from COSMIC observations. Clim Dyn 49:3277–3292.  https://doi.org/10.1007/s00382-016-3512-x CrossRefGoogle Scholar
  70. Tian W, Tian H, Dhomse S, Feng W (2011) A study of upper troposphere and lower stratosphere water vapor above the Tibetan Plateau using AIRS and MLS data. Atmos Sci Lett 12:233–239.  https://doi.org/10.1002/asl.319 CrossRefGoogle Scholar
  71. Tobo Y, Iwasaka Y, Zhang D, Shi G, Kim YS, Tamura K, Ohashi T (2008) Summertime “ozone valley” over the Tibetan Plateau derived from ozonesondes and EP/TOMS data. Geophys Res Lett 35:L16801.  https://doi.org/10.1029/2008GL034341 CrossRefGoogle Scholar
  72. Uma KN, Das SK, Das SS (2014) A climatological perspective of water vapour at the UTLS region over different global monsoon regions: observations inferred from the AURA-MLS and reanalysis data. Clim Dyn 43:407–420.  https://doi.org/10.1007/s0038-014-2085-9 CrossRefGoogle Scholar
  73. Vaughan G, Price J (1989) Ozone transport into the troposphere in a cut-off low event, Ozone in the atmosphere. In: Bojkov R, Fabian P, Deepak A (eds) Publishing Hampton, USA, pp 415–418Google Scholar
  74. Venkat Ratnam M, Babu SR, Das SS, Basha G, Krishnamurthy BV, Rao BV (2016) Effect of tropical cyclones on the stratosphere–troposphere exchange observed using satellite observations over north Indian Ocean. Atmos Chem Phys 16:8581–8591.  https://doi.org/10.5194/acp-16-8581-2016 CrossRefGoogle Scholar
  75. Wei MY (1987) A New formulation of the exchange of mass and trace constituents between the stratosphere and troposphere. J Atmos Sci 44:3079–3086,  https://doi.org/10.1175/1520-0469(1987)044%3C3079:ANFOTE%3E2.0.CO;2 CrossRefGoogle Scholar
  76. Wild O (2007) Modeling the global tropospheric ozone budget: exploring the variability in current models. Atmos Chem Phys 7:2643–2660.  https://doi.org/10.5194/acp-7-2643-2007 CrossRefGoogle Scholar
  77. Worden J et al (2009) Observed vertical distribution of tropospheric ozone during the Asian summertime monsoon. J Geophys Res 114:D13304.  https://doi.org/10.1029/2008JD010560 CrossRefGoogle Scholar
  78. Wu G, Liu Y, Dong B, Liang X, Duan A, Bao Q, Yu J (2012) Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation. Clim Dyn 39:1169.  https://doi.org/10.1007/s00382-012-1334-z CrossRefGoogle Scholar
  79. Xu X, Zhao T, Lu C, Guo Y, Chen B, Liu R, Li Y, Shi X (2014) An important mechanism sustaining the atmospheric “water tower” over the Tibetan Plateau. Atmos Chem Phys 14:11287–11295.  https://doi.org/10.5194/acp-14-11287-2014 CrossRefGoogle Scholar
  80. Yanai M, Li CF, Song ZS (1992) Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J Meteorol Soc Jpn 70:319–351.  https://doi.org/10.2151/jmsj1965.70.1B_319 CrossRefGoogle Scholar
  81. Zhan R, Wang Y (2012) Contribution of tropical cyclones to stratosphere–troposphere exchange over the northwest Pacific: estimation based on AIRS satellite retrievals and ERA-Interim data. J Atmos Res 117:D12112.  https://doi.org/10.1029/2012JD017494 Google Scholar
  82. Zhou X, Luo C (1994) Ozone valley over Tibetan Plateau. Acta Meteorol Sin 8:505–506Google Scholar
  83. Zou H (1996) Seasonal variation and trends of TOMS ozone over Tibet. Geophys Res Lett 23:1029–1032.  https://doi.org/10.1029/96GL00767 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Siddarth Shankar Das
    • 1
    Email author
  • K. V. Suneeth
    • 1
  • M. Venkat Ratnam
    • 2
  • I. A. Girach
    • 1
  • Subrata Kumar Das
    • 3
  1. 1.Space Physics Laboratory, Vikram Sarabhai Space CentreTrivandrumIndia
  2. 2.National Atmospheric Research Laboratory, Department of SpaceGadankiIndia
  3. 3.Indian Institute of Tropical MeteorologyPuneIndia

Personalised recommendations