Advertisement

Climate Dynamics

, Volume 52, Issue 5–6, pp 3609–3629 | Cite as

WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niño: implications for GCM-scale simulation of precipitation over complex terrain

  • José A. Posada-MarínEmail author
  • Angela M. Rendón
  • Juan F. Salazar
  • John F. Mejía
  • Juan Camilo Villegas
Article

Abstract

Precipitation in the tropical Andes is strongly influenced by the ENSO phases and orographic effects. In particular, precipitation can be drastically reduced during El Niño. Decision-making about water resources relies on modelling precipitation as the main source for water availability. Here we evaluate ERA-Interim´s capacity to represent precipitation in the mountainous central Colombian Andes, a strategic region for water supply and hydropower generation, for different phases of ENSO during 1998–2012. Our results show that ERA-Interim fails to reproduce important features of precipitation spatial and temporal variability during different ENSO phases. Most critical in these results is how ERA-Interim overestimates precipitation during the dry season in El Niño years, which corresponds to the most critical condition for water supply. We show that ERA-Interim limitations are likely related to its simplified representation of the complex topography in the region, which excludes the inter-Andean Cauca river valley. To improve this, we implement a dynamical downscaling experiment using the WRF regional climate model, including a sensitivity analysis that considers three convective parameterization schemes and a convection-permitting simulation. WRF downscaling outperforms ERA-Interim in the representation of precipitation during the dry season of El Niño years, especially through correcting positive precipitation biases. This improvement is related to a better representation of orographic effects in WRF simulations. Our results suggest that ERA-Interim and, more generally, climate simulations with comparable coarse resolutions, may produce misleading precipitation overestimations in the tropical Andes if they do not adequately represent inter-Andean valleys, with important implications for water resources management.

Keywords

WRF model El Niño Precipitation ERA-Interim Dynamical downscaling Tropical Andes 

Notes

Acknowledgements

Funding was provided by “Programa de investigación en la gestión de riesgo asociado con cambio climático y ambiental en cuencas hidrográficas” (UT-GRA), Convocatoria 543–2011 Colciencias. JFS was partially supported by the IAI-INPE Internship program: “Understanding Climate Change and Variability in the Americas”. JFM was partially supported by the Desert Research Institute/Division of Atmospheric Sciences and COLCIENCIAS (award No FP44842-856-2014).

Supplementary material

382_2018_4403_MOESM1_ESM.docx (7.8 mb)
Supplementary material 1 (DOCX 8008 KB)

References

  1. Anthes RA, Kuo YH, Hsie EY, Low-Nam S, Bettge TW (1989) Estimation of skill and uncertainty in regional numerical models. Q J R Meteorol Soc 115:763–806CrossRefGoogle Scholar
  2. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018CrossRefGoogle Scholar
  3. Betts AK, Miller MJ (1993) The Betts-Miller scheme. In: Emmanuel KA et al (eds) The representation of cumulus convection in numerical models. American Meteor Society, 107–121Google Scholar
  4. Boulanger JP et al (2010) A Europe–South America network for climate change assessment and impact studies. Clim Change 98:307–329CrossRefGoogle Scholar
  5. Bowden JH, Otte TL, Nolte CG, Otte MJ (2012) Examining interior grid nudging techniques using two-way nesting in the WRF model for regional climate modeling. J Climate 25:2805–2823CrossRefGoogle Scholar
  6. Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312:1755–1756CrossRefGoogle Scholar
  7. Bukovsky MS, Karoly DJ (2009) Precipitation simulations using WRF as a nested regional climate model. J Appl Meteor Climatol 48:2152–2159CrossRefGoogle Scholar
  8. Buytaert W, Célleri R, De Bièvre B, Cisneros F, Wyseure G, Deckers J, Hofstede R (2006) Human impact on the hydrology of the Andean páramos. Earth-Sci Rev 79(1):53–72CrossRefGoogle Scholar
  9. Cai W, Borlace S, Lengaigne M, Van Rensch P, Collins M et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4:111–116CrossRefGoogle Scholar
  10. Cai W, Wang G, Santoso A, McPhaden MJ, Wu L, Jin FF et al (2015) Increased frequency of extreme La Nina events under greenhouse warming. Nat Clim Change 5:132–137CrossRefGoogle Scholar
  11. Cardoso RM, Soares PM, Miranda PM, Belo-Pereira M (2013) WRF high resolution simulation of Iberian mean and extreme precipitation climate. Int J Climatol 33:2591–2608.  https://doi.org/10.1002/joc.3616 CrossRefGoogle Scholar
  12. Celleri R, Willems P, Buytaert W, Feyen J (2007) Space–time rainfall variability in the Paute basin, Ecuadorian Andes. Hydrol Process 21(24):3316–3327CrossRefGoogle Scholar
  13. Chotamonsak C, Salathé EP, Kreasuwan J, Chantara S, Siriwitayakorn K (2011) Projected climate change over Southeast Asia simulated using a WRF regional climate model. Atmos Sci Lett.  https://doi.org/10.1002/asl.313 Google Scholar
  14. Chotamonsak C, Salathé EP, Kreasuwan J, Chantara S (2012) Evaluation of precipitation simulations over Thailand using a WRF regional climate model. Chiang Mai J Sci 39:623–628Google Scholar
  15. Collins WD et al (2004) Description of the NCAR community atmosphere model (CAM 3.0). NCAR Techical Note, NCAR/TN-464 + STR, p 226Google Scholar
  16. Crétat J, Pohl B, Richard Y, Drobinski P (2012) Uncertainties in simulating regional climate of Southern Africa: sensitivity to physical parameterizations using WRF. Clim Dyn 38:613–634CrossRefGoogle Scholar
  17. Data C, Room M, Portal CCW (2000) Multivariate ENSO index (MEI). https://www.esrl.noaa.gov/psd/enso/mei/ARcHivEd=MeI/200601/mei.html (Updated in 6 Feb 2006)
  18. Debreu L, Blayo E (2008) Two-way embedding algorithms: a review. Ocean Dyn 58:415–428CrossRefGoogle Scholar
  19. Debreu L, Marchesiello P, Penven P, Cambon G (2012) Two-way nesting in split-explicit ocean models: algorithms, implementation and validation. Ocean Model 49:1–21CrossRefGoogle Scholar
  20. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteorol Soc 137:553–597CrossRefGoogle Scholar
  21. Duan W, Hu J (2016) The initial errors that induce a significant “spring predictability barrier” for El Niño events and their implications for target observation: results from an earth system model. Clim Dyn 46:3599–3615CrossRefGoogle Scholar
  22. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V et al (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res Atmos.  https://doi.org/10.1029/2002JD003296 Google Scholar
  23. Fernández-González S, Valero F, Sánchez JL, Gascón E, López L, García-Ortega E, Merino A (2015) Numerical simulations of snowfall events: sensitivity analysis of physical parameterization. J Geophys Res Atmos.  https://doi.org/10.1002/2015JD023793 Google Scholar
  24. Flaounas E, Bastin S, Janicot S (2011) Regional climate modelling of the 2006 West African monsoon: sensitivity to convection and planetary boundary layer parameterisation using WRF. Clim Dyn 36:1083–1105CrossRefGoogle Scholar
  25. Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res Atmos 104:6335–6352CrossRefGoogle Scholar
  26. Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787CrossRefGoogle Scholar
  27. Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29:38CrossRefGoogle Scholar
  28. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A et al (2009) Understanding El Nino in ocean–atmosphere general circulation models: progress and challenges. Bull Am Meteorol Soc 90:325–340CrossRefGoogle Scholar
  29. Gutiérrez F, Dracup JA (2001) An analysis of the feasibility of long-range streamflow forecasting for Colombia using El Nino–Southern Oscillation indicators. J Hydrol 246(1):181–196CrossRefGoogle Scholar
  30. Harris LM, Durran DR (2010) An idealized comparison of one-way and two-way grid nesting. Mon Weather Rev 138:2174–2187CrossRefGoogle Scholar
  31. Heikkilä U, Sandvik A, Sorteberg A (2011) Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Clim Dyn 37:1551–1564CrossRefGoogle Scholar
  32. Hong SY, Dudhia J (2012) Next-generation numerical weather prediction: bridging parameterization, explicit clouds, and large eddies. Bull Am Meteor Soc 93(1):ES6–ES9CrossRefGoogle Scholar
  33. Hong SY, Lim JO (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteor Soc 42:129–151Google Scholar
  34. Hoyos N, Escobar J, Restrepo JC et al (2013) Impact of the 2010–2011 La Niña phenomenon in Colombia, South America: the human toll of an extreme weather event. Appl Geogr 39:16–25CrossRefGoogle Scholar
  35. Janjić ZI (1994) The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122(5):927–945CrossRefGoogle Scholar
  36. Janjić ZI (2002) Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP 437:61Google Scholar
  37. Jones P, Harris I (2013) CRU TS3. 21: climatic research unit (CRU) time-series (TS) version 3.21 of high resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2012). NCAS British Atmospheric Data CentreGoogle Scholar
  38. Jones RG, Murphy JM, Noguer M (1995) Simulation of climate change over europe using a nested regional-climate model. I: assessment of control climate, including sensitivity to location of lateral boundaries. Q J R Meteorol Soc 121:1413–1449Google Scholar
  39. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181CrossRefGoogle Scholar
  40. Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the Kain-Fritsch scheme. In: Emanuel KA, Raymond DJ (eds) The representation of cumulus convection in numerical models. American Meteorological Society, Boston, MA, pp 165–170CrossRefGoogle Scholar
  41. Køltzow M, Iversen T, Haugen JE (2008) Extended Big-Brother experiments: the role of lateral boundary data quality and size of integration domain in regional climate modelling. Tellus A 60:398–410CrossRefGoogle Scholar
  42. Leung LR, Qian Y (2003) The sensitivity of precipitation and snowpack simulations to model resolution via nesting in regions of complex terrain. J Hydrometeorol 4:1025–1043CrossRefGoogle Scholar
  43. Liang XZ, Xu M, Yuan X, Ling T, Choi HI, Zhang F et al (2012) Regional climate–weather research and forecasting model. Bull Am Meteorol Soc 93:1363–1387CrossRefGoogle Scholar
  44. Liu Z, Ostrenga D, Teng W, Kempler S (2012a) Tropical Rainfall Measuring Mission (TRMM) precipitation data and services for research and applications. Bull Am Meteorol Soc 93:1317–1325CrossRefGoogle Scholar
  45. Liu P, Tsimpidi AP, Hu Y, Stone B, Russell AG, Nenes A (2012b) Differences between downscaling with spectral and grid nudging using WRF. Atmos Chem Phys 12:3601–3610CrossRefGoogle Scholar
  46. López ME, Howell WE (1967) Katabatic winds in the equatorial Andes. J Atmos Sci 24:29–35CrossRefGoogle Scholar
  47. Magrín G, Gay-García C, Cruz-Choque D, Giménez JC, Moreno AR, Nagy GJ, Nobre C, Villamizar A (2007) Latin America. Climate change 2007: impacts, adaptation and vulnerability. contribution of working group II to the fourth assessment report of the intergovernmental panel on climate changeGoogle Scholar
  48. Mass CF, Ovens D, Westrick K, Colle BA (2002) Does increasing horizontal resolution produce more skillful forecasts? Bull Am Meteorol Soc 83(3):407–430CrossRefGoogle Scholar
  49. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multi-model data set: A new era in climate change research. Bull Am Meteorol Soc 88:1383–1394.  https://doi.org/10.1175/BAMS-88-9-1383 CrossRefGoogle Scholar
  50. Menéndez CG, De Castro M, Sorensson A, Boulanger JP (2010) CLARIS project: towards climate downscaling in South America. Meteorol Z 19:357–362CrossRefGoogle Scholar
  51. Misra V, Dirmeyer PA, Kirtman BP (2003) Dynamic downscaling of seasonal simulations over South America. J Climate 16:103–117CrossRefGoogle Scholar
  52. Niu GY, Yang ZL, Mitchell KE, Chen F, Ek MB, Barlage M et al (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res Atmos 116:D12109.  https://doi.org/10.1029/2010JD015139 CrossRefGoogle Scholar
  53. Omrani H, Drobinski P, Dubos T (2015) Using nudging to improve global-regional dynamic consistency in limited-area climate modeling: What should we nudge? Clim Dyn 44:1627–1644CrossRefGoogle Scholar
  54. Pohl B, Crétat J (2013) On the use of nudging techniques for regional climate modeling: application for tropical convection. Clim Dyn.  https://doi.org/10.1007/s00382-013-1994-3 Google Scholar
  55. Pohl B, Crétat J, Camberlin P (2011) Testing WRF capability in simulating the atmospheric water cycle over Equatorial East Africa. Clim Dyn 37:1357–1379CrossRefGoogle Scholar
  56. Poveda G, Mesa OJ (1997) Feedbacks between hydrological processes in tropical South America and large-scale ocean–atmospheric phenomena. J Climate 10:2690–2702CrossRefGoogle Scholar
  57. Poveda G, Mesa OJ (2000) On the existence of Lloró (the rainiest locality on earth): enhanced oceanland-atmosphere interaction by a low-level jet. Geophys Res Lett 27(11):1675–1678CrossRefGoogle Scholar
  58. Poveda G, Waylen PR, Pulwarty RS (2006) Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr Palaeoclimatol Palaeoecol 234: 3–27CrossRefGoogle Scholar
  59. Poveda G, Álvarez DM, Rueda Ó (2011) Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim Dyn 36:2233–2249.  https://doi.org/10.1007/s00382-010-0931-y CrossRefGoogle Scholar
  60. Poveda G, Jaramillo L, Vallejo LF (2014) Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour Res 50(1):98–118CrossRefGoogle Scholar
  61. Prein AF, Gobiet A, Suklitsch M, Truhetz H, Awan NK, Keuler K, Georgievski G (2013) Added value of convection permitting seasonal simulations. Clim Dyn 41:2655–2677CrossRefGoogle Scholar
  62. Ranasinghe R, McLoughlin R, Short A, Symonds G (2004) The Southern Oscillation Index, wave climate, and beach rotation. Mar Geol 204:273–287CrossRefGoogle Scholar
  63. Ratna SB, Ratnam JV, Behera SK, Ndarana T, Takahashi K, Yamagata T (2014) Performance assessment of three convective parameterization schemes in WRF for downscaling summer rainfall over South Africa. Clim Dyn 42:2931–2953CrossRefGoogle Scholar
  64. Rauscher SA, Coppola E, Piani C, Giorgi F (2010) Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim Dyn 35(4):685–711CrossRefGoogle Scholar
  65. Rendón AM, Salazar JF, Palacio CA, Wirth V, Brötz B (2014) Effects of urbanization on the temperature inversion breakup in a mountain valley with implications for air quality. J Appl Meteorol Climatol 53:840–858CrossRefGoogle Scholar
  66. Ruiz JJ, Saulo C, Nogués-Paegle J (2010) WRF model sensitivity to choice of parameterization over South America: validation against surface variables. Mon Weather Rev 138:3342–3355CrossRefGoogle Scholar
  67. Rummukainen M (2010) State-of-the-art with regional climate models. Wiley Interdisc Rev Clim Change 1(1):82–96CrossRefGoogle Scholar
  68. Sakamoto MS, Ambrizzi T, Poveda G (2011) Moisture sources and life cycle of convective systems over western Colombia. Adv Meteorol 2011:1–11CrossRefGoogle Scholar
  69. Santoso A, McGregor S, Jin FF, Cai W, England MH, An S et al (2013) Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature 504:126–130.  https://doi.org/10.1038/nature12683 CrossRefGoogle Scholar
  70. Schneider U, Fuchs T, Meyer-Christoffer A, Rudolf B (2008) Global precipitation analysis products of the GPCC. M., Germany, Global Precipitation Climatology Centre (GPCC), Deutscher Wetterdienst, Offenbach a. M., GermanyGoogle Scholar
  71. Schwartz CS, Kain JS, Weiss SJ, Xue M, Bright DR, Kong F, Coniglio MC (2009) Next-day convection-allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing. Mon Weather Rev 137(10):3351–3372CrossRefGoogle Scholar
  72. Skamarock WC (2004) Evaluating mesoscale NWP models using kinetic energy spectra. Mon Weather Rev 132:3019–3032CrossRefGoogle Scholar
  73. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG et al (2008) A Description of the Advanced Research WRF Version 3. Technical Report (June), 113Google Scholar
  74. Soares PMM, Cardoso RM, Miranda PM, De Medeiros J, Belo-Pereira M, Espirito-Santo F (2012) WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Clim Dyn 39:2497–2522.  https://doi.org/10.1007/s00382-012-1315-2 CrossRefGoogle Scholar
  75. Solman SA, Nunez MN, Cabré MF (2008) Regional climate change experiments over southern South America. I: present climate. Clim Dyn 30:533–552CrossRefGoogle Scholar
  76. Solman SA, Sánchez E, Samuelsson P, Da Rocha RP, Li L, Marengo J et al (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41:1139–1157CrossRefGoogle Scholar
  77. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106:7183–7192CrossRefGoogle Scholar
  78. Taylor KE, Stouffer RJ, Meehl GA (2012) An Overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93:485–498.  https://doi.org/10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  79. Wang YQ, Leung LR, McGregor JL, Lee DK, Wang WC, Ding YH, Kimura F (2004) Regional Climate Modeling: Progress, Challenges, and Prospects. J Meteorol Soc Jpn 82:1599–1628.  https://doi.org/10.2151/jmsj.82.1599 CrossRefGoogle Scholar
  80. Warrach-Sagi K, Schwitalla T, Wulfmeyer V, Bauer HS (2013) Evaluation of a climate simulation in Europe based on the WRF-NOAH model system: Precipitation in Germany. Clim Dyn 41:755–774.  https://doi.org/10.1007/s00382-013-1727-7 CrossRefGoogle Scholar
  81. Zardi D, Whiteman CD (2013) Diurnal mountain wind systems. Mountain Weather Research and Forecasting: 35–119. Springer, DordrechtGoogle Scholar
  82. Zhang C, Wang Y, Lauer A, Hamilton K (2012) Configuration and evaluation of the WRF model for the study of Hawaiian Regional climate. Mon Weather Rev 140:3259–3277.  https://doi.org/10.1175/MWR-D-11-00260.1 CrossRefGoogle Scholar
  83. Zuluaga MD, Poveda G (2004) Diagnostics of mesoscale convective systems over Colombia and the eastern tropical Pacific during 1998–2002. Av Recur Hidr 11:145–160Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • José A. Posada-Marín
    • 1
    Email author
  • Angela M. Rendón
    • 1
  • Juan F. Salazar
    • 1
  • John F. Mejía
    • 2
  • Juan Camilo Villegas
    • 1
  1. 1.Grupo de Ingeniería y Gestión Ambiental (GIGA), Escuela Ambiental, Facultad de IngenieríaUniversidad de AntioquiaMedellínColombia
  2. 2.Department of Atmospheric SciencesDesert Research InstituteRenoUSA

Personalised recommendations