Advertisement

Climate Dynamics

, Volume 51, Issue 11–12, pp 4029–4041 | Cite as

An advanced impact of Arctic stratospheric ozone changes on spring precipitation in China

  • Fei Xie
  • Xuan MaEmail author
  • Jianping Li
  • Jinlong Huang
  • Wenshou Tian
  • Jiankai Zhang
  • Yongyun Hu
  • Cheng Sun
  • Xin Zhou
  • Juan Feng
  • Yun Yang
Article
  • 99 Downloads

Abstract

The effect of spring Arctic Stratospheric Ozone (ASO) changes on spring precipitation in China is analyzed using observations, reanalysis data, and the Whole Atmosphere Community Climate Model version 4 (WACCM4). We find that February–March mean ASO changes have a significant impact on April–May mean precipitation over Loess Plateau and middle–lower reaches of the Yangtze River—two important grain-producing regions with large populations. Changes in the polar vortex link the ASO to precipitation in China. Stratospheric circulation anomalies caused by ASO changes can propagate to the North Pacific. An increase in ASO leads to enhanced westerlies in the high and low latitudes of the North Pacific but weakened westerly in the mid-latitudes of the North Pacific. The circulation anomalies over the North Pacific, forced by the increase of ASO, can extend westwards to East Asia, leading to an abnormal anticyclone in the East Asian upper and middle troposphere, and an abnormal cyclone in the lower troposphere. This enhances the warm and humid airstream from Western Pacific to Chinese mainland and strengthens upwelling over Loess Plateau and middle–lower reaches of the Yangtze River. These conditions enhance precipitation in central China during positive ASO anomaly events and reduce precipitation during negative events. The WACCM4 simulations support the results from statistical analysis of observations and reanalysis data. Our results suggest that ASO variation can serve as a predictor of spring precipitation variation over Loess Plateau and middle–lower reaches of the Yangtze River.

Notes

Acknowledgements

Funding for this project was provided by the National Natural Science Foundation of China (41790474, 41530423, and 41575039). We acknowledge ozone datasets from the SWOOSH and GOZCARDS; precipitation from China Meteorological Administration, GPCC and GPCP; Meteorological fields from NCEP2.

References

  1. Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584.  https://doi.org/10.1126/science.1063315 CrossRefGoogle Scholar
  2. Bitz CM, Polvani LM (2012) Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model. Geophys Res Lett 39:L20705.  https://doi.org/10.1029/2012GL053393 CrossRefGoogle Scholar
  3. Cagnazzo C, Manzini E (2009) Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European Region. J Clim 22:1223–1238.  https://doi.org/10.1175/2008JCLI2549.1 CrossRefGoogle Scholar
  4. Cai XZ, Wang Y, Xu JJ (2002) Diagnostic analysis on impact of convective activity anomalies over tropic on flood/drought during the first rainy season in South China. J Trop Meteorol 18:157–164Google Scholar
  5. Calvo N, Polvani LM, Solomon S (2015) On the surface impact of Arctic stratospheric ozone extremes. Environ Res Lett 10:094003.  https://doi.org/10.1088/1748-9326/10/9/094003 CrossRefGoogle Scholar
  6. Chen YM, Qian YF (2005) Numerical study of influence of the SSTA in western Pacific warm pool on precipitation in the first flood period in south China. J Trop Meteorol 21:13–23Google Scholar
  7. Chen SD, Wang QQ, Qian YF (2003) Preliminary discussions of basic climatic characteristics of precipitation during raining seasons in regions south of Yangtze River and its relationship to SST anomalies. J Trop Meteorol 19:260–268Google Scholar
  8. Chen W, Wang L, Xue YK, Sun SF (2009) Variabilities of the spring river runoff system in East China and their relations to precipitation and sea surface temperature. Int J Climatol 29:1381–1394.  https://doi.org/10.1002/joc.1785 CrossRefGoogle Scholar
  9. Cheung JCH, Haigh JD, Jackson DR (2014) Impact of EOS MLS ozone data on medium-extended range ensemble weather forecasts. J Geophys Res 119:9253–9266.  https://doi.org/10.1002/2014JD021823 CrossRefGoogle Scholar
  10. Chipperfield MP, Dhomse SS, Feng W, McKenzie RL, Velders GJM, Pyle JA (2015) Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol. Nat Commun.  https://doi.org/10.1038/ncomms8233 CrossRefGoogle Scholar
  11. Danabasoglu G, Bates SC, Briegleb BP, Jayne SR, Jochum M, Large WG, Peacock S, Yeager SG (2012) The CCSM4 ocean component. J Clim 25:1361–1389.  https://doi.org/10.1175/Jcli-D-11-00091.1 CrossRefGoogle Scholar
  12. Davis SM, Rosenlof KH, Hassler B, Hurst DF, Read WG, Vomel H, Selkirk H, Fujiwara M, Damadeo R (2016) The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: a long-term database for climate studies. Earth Syst Sci Data 8:461–490.  https://doi.org/10.5194/essd-8-461-2016 CrossRefGoogle Scholar
  13. Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal Clox/Nox interaction. Nature 315:207–210.  https://doi.org/10.1038/315207a0 CrossRefGoogle Scholar
  14. Feldstein SB (2011) Subtropical rainfall and the Antarctic ozone hole. Science 332:925–926.  https://doi.org/10.1126/science.1206834 CrossRefGoogle Scholar
  15. Feng J, Li JP (2011) Influence of El Nino Modoki on spring rainfall over south China. J Geophys Res Atmos 116:D13102.  https://doi.org/10.1029/2010jd015160 CrossRefGoogle Scholar
  16. Folland CK, Karl TR, Vinnikov KYA (1990) Observed climate variations and change. In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) Climate change, the IPCC scientific assessment. Cambridge University Press, Cambridge, pp 195–238Google Scholar
  17. Forster PMD, Shine KP (1997) Radiative forcing and temperature trends from stratospheric ozone changes. J Geophys Res Atmos 102:10841–10855.  https://doi.org/10.1029/96jd03510 CrossRefGoogle Scholar
  18. Froidevaux L, Anderson J, Wang HJ, Fuller RA, Schwartz MJ, Santee ML, Livesey NJ, Pumphrey HC, Bernath PF, Russell JM, McCormick MP (2015) Global OZone Chemistry And Related trace gas Data records for the Stratosphere (GOZCARDS): methodology and sample results with a focus on HCl, H2O, and O3. Atmos Chem Phys 15:10471–10507.  https://doi.org/10.5194/acp-15-10471-2015 CrossRefGoogle Scholar
  19. Garcia RR, Marsh DR, Kinnison DE, Boville BA, Sassi F (2007) Simulation of secular trends in the middle atmosphere, 1950–2003. J Geophys Res Atmos 112:D09301.  https://doi.org/10.1029/2006JD007485 CrossRefGoogle Scholar
  20. Gerber EP, Son SW (2014) Quantifying the summertime response of the Austral Jet Stream and Hadley Cell to stratospheric ozone and greenhouse gases. J Clim 27:5538–5559.  https://doi.org/10.1175/Jcli-D-13-00539.1 CrossRefGoogle Scholar
  21. Gillett NP, Thompson DWJ (2003) Simulation of recent Southern Hemispheric climate change. Science 302:273–275.  https://doi.org/10.1126/science.1087440 CrossRefGoogle Scholar
  22. Graf HF, Walter K (2005) Polar vortex controls coupling of North Atlantic Ocean and atmosphere. Geophys Res Lett 32:L01704.  https://doi.org/10.1029/2004GL020664 CrossRefGoogle Scholar
  23. Haigh JD (1994) The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature 370:544–546.  https://doi.org/10.1038/370544a0 CrossRefGoogle Scholar
  24. Holland MM, Bailey DA, Briegleb BP, Light B, Hunke E (2012) Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on Arctic sea ice. J Clim 25:1413–1430.  https://doi.org/10.1175/Jcli-D-11-00078.1 CrossRefGoogle Scholar
  25. Hu YY, Tung KK (2003) Possible ozone-induced long-term changes in planetary wave activity in late winter. J Clim 16: 3027–3038. https://doi.org/10.1175/1520-0442(2003)016<3027:Polcip>2.0.Co;2CrossRefGoogle Scholar
  26. Hu YY, Tung KK, Liu JP (2005) A closer comparison of early and late-winter atmospheric trends in the northern hemisphere. J Clim 18:3204–3216.  https://doi.org/10.1175/Jcli3468.1 CrossRefGoogle Scholar
  27. Hurrell JW (1996) Influence of variations in extratropical wintertime teleconnections on Northern-Hemisphere temperature. Geophys Res Lett 23:665–668.  https://doi.org/10.1029/96gl00459 CrossRefGoogle Scholar
  28. Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner PJ, Lamarque JF, Large WG, Lawrence D, Lindsay K, Lipscomb WH, Long MC, Mahowald N, Marsh DR, Neale RB, Rasch P, Vavrus S, Vertenstein M, Bader D, Collins WD, Hack JJ, Kiehl J, Marshall S (2013) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94:1339–1360.  https://doi.org/10.1175/Bams-D-12-00121.1 CrossRefGoogle Scholar
  29. Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Niño. Nat Geosci 2:32–36.  https://doi.org/10.1038/NGEO381 CrossRefGoogle Scholar
  30. Ivy DJ, Solomon S, Calvo N, Thompson DW (2017) Observed connections of Arctic stratospheric ozone extremes to Northern Hemisphere surface climate. Environ Res Lett 12:024004CrossRefGoogle Scholar
  31. Jones PD, New M, Parker DE, Martin S, Rigor IG (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37:173–199.  https://doi.org/10.1029/1999rg900002 CrossRefGoogle Scholar
  32. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-years reanalysis project. Bull Am Meteorol Soc 77:437–471. https://doi.org/10.1175/1520-0477(1996)077<0437:Tnyrp>2.0.Co;2CrossRefGoogle Scholar
  33. Kang SM, Polvani LM, Fyfe JC, Sigmond M (2011) Impact of polar ozone depletion on subtropical precipitation. Science 332:951–954.  https://doi.org/10.1126/science.1202131 CrossRefGoogle Scholar
  34. Karpechko AY, Perlwitz J, Manzini E (2014) A model study of tropospheric impacts of the Arctic ozone depletion of 2011. J Geophys Res Atmos 119:7999–8014.  https://doi.org/10.1002/2013jd021350 CrossRefGoogle Scholar
  35. Kerr JB, Mcelroy CT (1993) Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science 262:1032–1034.  https://doi.org/10.1126/science.262.5136.1032 CrossRefGoogle Scholar
  36. Kidston J, Scaife AA, Hardiman SC, Mitchell DM, Butchart N, Baldwin MP, Gray LJ (2015) Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat Geosci 8:433–440.  https://doi.org/10.1038/NGEO2424 CrossRefGoogle Scholar
  37. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP/NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267. https://doi.org/10.1175/1520-0477(2001)082<0247:Tnnyrm>2.3.Co;2CrossRefGoogle Scholar
  38. Labitzke K, Naujokat B (2000) The lower Arctic stratospheric in winter since 1952. SPARC Newsl 15:11–14Google Scholar
  39. Li WJ, Zuo JQ, Song YL, Liu JP, Li Y, Shen YY, Li JX (2015) Changes in spatio–temporal distribution of drought/flood disaster in southern China under global climate warming. Meteorol Mon 41:261–271.  https://doi.org/10.7519/j.issn.1000-0526.2015.03.001 CrossRefGoogle Scholar
  40. Li WJ, Zhang RN, Sun CH, Ren HC, Liu JP, Zuo JQ, Li X (2016a) Recent research advances on the interannual-interdecadal variations of drought/flood in South China and associated causes. J Appl Meteorol Sci 27:577–591.  https://doi.org/10.11898/1001-7313.20160507 CrossRefGoogle Scholar
  41. Li F, Vikhliaev YV, Newman PA, Pawson S, Perlwitz J, Waugh DW, Douglass AR (2016b) Impacts of interactive stratospheric chemistry on Antarctic and Southern Ocean climate change in the Goddard Earth Observing System, Version 5 (GEOS-5). J Clim 29:3199–3218.  https://doi.org/10.1175/Jcli-D-15-0572.1 CrossRefGoogle Scholar
  42. Liu B, Xu M, Henderson M, Qi Y (2005) Observed trends of precipitation amount, frequency, and intensity in China, 1960–2000. J Geophys Res Atmos 110:D08103.  https://doi.org/10.1029/2004JD004864 CrossRefGoogle Scholar
  43. Lubin D, Jensen EH (1995) Effects of clouds and stratospheric ozone depletion on ultraviolet radiation trends. Nature 377:710–713.  https://doi.org/10.1038/377710a0 CrossRefGoogle Scholar
  44. Marsh DR, Mills MJ, Kinnison DE, Lamarque JF, Calvo N, Polvani LM (2013) Climate change from 1850 to 2005 simulated in CESM1(WACCM). J Clim 26:7372–7391.  https://doi.org/10.1175/Jcli-D-12-00558.1 CrossRefGoogle Scholar
  45. Marshall GJ, Orr A, van Lipzig NPM, King JC (2006) The impact of a changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures. J Clim 19:5388–5404.  https://doi.org/10.1175/Jcli3844.1 CrossRefGoogle Scholar
  46. Min SK, Son SW (2013) Multimodel attribution of the Southern Hemisphere Hadley cell widening: major role of ozone depletion. J Geophys Res Atmos 118:3007–3015.  https://doi.org/10.1002/jgrd.50232 CrossRefGoogle Scholar
  47. Montzka S, Reimann S, Engel A, Kruger K, Sturges W, Blake D, Dorf M, Fraser P, Froidevaux L, Jucks K (2011) Scientific assessment of ozone depletion: 2010. Global Ozone Research and Monitoring Project-Report No. 51Google Scholar
  48. Neale RB, Richter J, Park S, Lauritzen PH, Vavrus SJ, Rasch PJ, Zhang MH (2013) The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J Clim 26:5150–5168.  https://doi.org/10.1175/Jcli-D-12-00236.1 CrossRefGoogle Scholar
  49. Pawson S, Naujokat B (1999) The cold winter of the middle 1990s in the northern lower stratosphere. J Geophys Res Atmos 104:14209–14222.  https://doi.org/10.1029/1999jd900211 CrossRefGoogle Scholar
  50. Polvani LM, Waugh DW, Correa GJP, Son SW (2011) Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J Clim 24:795–812.  https://doi.org/10.1175/2010JCLI3772.1 CrossRefGoogle Scholar
  51. Ramaswamy V, Schwarzkopf MD, Randel WJ (1996) Fingerprint of ozone depletion in the spatial and temporal pattern of recent lower-stratospheric cooling. Nature 382:616–618.  https://doi.org/10.1038/382616a0 CrossRefGoogle Scholar
  52. Randel WJ, Wu F (1999) Cooling of the Arctic and Antarctic polar stratosphere due to ozone depletion. J Clim 12:1467–1479CrossRefGoogle Scholar
  53. Randel WJ, Wu F (2007) A stratospheric ozone profile data set for 1979–2005: variability, trends, and comparisons with column ozone data. J Geophys Res Atmos 112:D06313.  https://doi.org/10.1029/2006JD007339 CrossRefGoogle Scholar
  54. Reichler T, Kim J, Manzini E, Kroger J (2012) A stratospheric connection to Atlantic climate variability. Nat Geosci 5:783–787.  https://doi.org/10.1038/NGEO1586 CrossRefGoogle Scholar
  55. Russell JL, Dixon KW, Gnanadesikan A, Stouffer RJ, Toggweiler JR (2006) The Southern Hemisphere westerlies in a warming world: propping open the door to the deep ocean. J Clim 19:6382–6390.  https://doi.org/10.1175/Jcli3984.1 CrossRefGoogle Scholar
  56. Shen Y, Feng M, Zhang H, Gao F (2010) Interpolation methods of China daily precipitation data. J Appl Meteorol Sci 21:279–286Google Scholar
  57. Smith KL, Polvani LM (2014) The surface impacts of Arctic stratospheric ozone anomalies. Environ Res Lett 9:074015.  https://doi.org/10.1088/1748-9326/9/7/074015 CrossRefGoogle Scholar
  58. Solomon S (1999) Stratospheric ozone depletion: a review of concepts and history. Rev Geophys 37:275–316.  https://doi.org/10.1029/1999rg900008 CrossRefGoogle Scholar
  59. Son SW, Polvani LM, Waugh DW, Akiyoshi H, Garcia R, Kinnison D, Pawson S, Rozanov E, Shepherd TG, Shibata K (2008) The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science 320:1486–1489.  https://doi.org/10.1126/science.1155939 CrossRefGoogle Scholar
  60. Son SW, Tandon NF, Polvani LM, Waugh DW (2009) Ozone hole and Southern Hemisphere climate change. Geophys Res Lett 36:L15705.  https://doi.org/10.1029/2009GL038671 CrossRefGoogle Scholar
  61. Son SW, Gerber EP, Perlwitz J, Polvani LM, Gillett NP, Seo KH, Eyring V, Shepherd TG, Waugh D, Akiyoshi H, Austin J, Baumgaertner A, Bekki S, Braesicke P, Bruhl C, Butchart N, Chipperfield MP, Cugnet D, Dameris M, Dhomse S, Frith S, Garny H, Garcia R, Hardiman SC, Jockel P, Lamarque JF, Mancini E, Marchand M, Michou M, Nakamura T, Morgenstern O, Pitari G, Plummer DA, Pyle J, Rozanov E, Scinocca JF, Shibata K, Smale D, Teyssedre H, Tian W, Yamashita Y (2010) Impact of stratospheric ozone on Southern Hemisphere circulation change: a multimodel assessment. J Geophys Res Atmos 115:D00M07.  https://doi.org/10.1029/2010JD014271 CrossRefGoogle Scholar
  62. Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895–899.  https://doi.org/10.1126/science.1069270 CrossRefGoogle Scholar
  63. Thompson DWJ, Solomon S (2005) Recent stratospheric climate trends as evidenced in radiosonde data: global structure and tropospheric linkages. J Clim 18:4785–4795.  https://doi.org/10.1175/Jcli3585.1 CrossRefGoogle Scholar
  64. Thompson DWJ, Solomon S, Kushner PJ, England MH, Grise KM, Karoly DJ (2011) Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat Geosci 4:741–749.  https://doi.org/10.1038/NGEO1296 CrossRefGoogle Scholar
  65. Tian WS, Chipperfield MP, Stevenson DS, Damoah R, Dhomse S, Dudhia A, Pumphrey H, Bernath P (2010) Effects of stratosphere-troposphere chemistry coupling on tropospheric ozone. J Geophys Res Atmos 115:D00m04.  https://doi.org/10.1029/2009jd013515 CrossRefGoogle Scholar
  66. Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294.  https://doi.org/10.1002/Joc.1130 CrossRefGoogle Scholar
  67. Waugh DW, Garfinkel CI, Polvani LM (2015) Drivers of the recent tropical expansion in the Southern Hemisphere: changing SSTs or ozone depletion? J Clim 28:6581–6586.  https://doi.org/10.1175/Jcli-D-15-0138.1 CrossRefGoogle Scholar
  68. WMO (World Meteorological Organization) (2003) Scientific Assessment of Ozone depletion: 2002. In: Global Ozone Research and Monitoring Project, Report No. 47, Geneva, pp 498Google Scholar
  69. Xie F, Li J, Tian W, Feng J, Huo Y (2012) Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos Chem Phys 12:5259–5273.  https://doi.org/10.5194/acp-12-5259-2012 CrossRefGoogle Scholar
  70. Xie F, Li JP, Tian WS, Fu Q, Jin FF, Hu YY, Zhang JK, Wang WK, Sun C, Feng J, Yang Y, Ding RQ (2016) A connection from Arctic stratospheric ozone to El Niño–Southern Oscillation. Environ Res Lett 11:124026.  https://doi.org/10.1088/1748-9326/11/12/124026 CrossRefGoogle Scholar
  71. Xie F, Li JP, Zhang JK, Tian WS, Hu YY, Zhao S, Sun S, Ding RQ, Feng J, Yang Y (2017) Variations in North Pacific sea surface temperature caused by Arctic stratospheric ozone anomalies. Environ Res Lett 12:114023.  https://doi.org/10.1088/1748-9326/aa9005 CrossRefGoogle Scholar
  72. Xiong GM, Chen QL, Wei LX, Hu DQ (2012a) Influences of the deflection of stratospheric polar vortex on winter precipitation of China. J Appl Meteorol Sci 23:683–690Google Scholar
  73. Xiong GM, Chen QL, Zhu KY, Fan GZ (2012b) Relationship between stratospheric polar vortex change and temperature, precipitation in winter of China. Plateau Meteorol 31:1001–1006Google Scholar
  74. Xu K, Zhu CW, He JH (2013) Two types of El Niño-related Southern Oscillation and their different impacts on global land precipitation. Adv Atmos Sci 30:1743–1757.  https://doi.org/10.1007/s00376-013-2272-3 CrossRefGoogle Scholar
  75. Yang FL, Lau KM (2004) Trend and variability of China precipitation in spring and summer: linkage to sea-surface temperatures. Int J Climatol 24:1625–1644.  https://doi.org/10.1002/joc.1094 CrossRefGoogle Scholar
  76. Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701.  https://doi.org/10.1029/2005GL023684 CrossRefGoogle Scholar
  77. Yu GC, Chen W, Xu PQ, Ma Y (2015) Mechanistic analysis of the influence of the latent heat associated with the Kuroshio Current on Chinese rainfall anomalies in spring. Clim Environ Res 20:600–610.  https://doi.org/10.3878/j.issn.1006-9585.2015.15050 CrossRefGoogle Scholar
  78. Zhang RH, Sumi A, Kimoto M (1999) A diagnostic study of the impact of El Nino on the precipitation in China. Adv Atmos Sci 16:229–241.  https://doi.org/10.1007/Bf02973084 CrossRefGoogle Scholar
  79. Zhang J, Tian WS, Chipperfield MP, Xie F, Huang J (2016) Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat Clim Change 6:1094–1099CrossRefGoogle Scholar
  80. Zhu CW, Zhou XJ, Zhao P, Chen LX, He JH (2011) Onset of East Asian subtropical summer monsoon and rainy season in China. Sci China Earth Sci 54:1845–1853.  https://doi.org/10.1007/s11430-011-4284-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fei Xie
    • 1
  • Xuan Ma
    • 1
    Email author
  • Jianping Li
    • 1
    • 2
  • Jinlong Huang
    • 3
  • Wenshou Tian
    • 3
  • Jiankai Zhang
    • 3
  • Yongyun Hu
    • 4
  • Cheng Sun
    • 1
  • Xin Zhou
    • 5
  • Juan Feng
    • 1
  • Yun Yang
    • 1
  1. 1.College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
  2. 2.Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.Key Laboratory for Semi-Arid Climate Change of the Ministry of EducationCollege of Atmospheric Sciences, Lanzhou UniversityLanzhouChina
  4. 4.Atmospheric and Oceanic Sciences, School of PhysicsPeking UniversityBeijingChina
  5. 5.Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric ScienceChengdu University of Information TechnologyChengduChina

Personalised recommendations