Advertisement

Interannual variability and dynamics of intraseasonal wind rectification in the equatorial Pacific Ocean

  • Xia Zhao
  • Dongliang Yuan
  • Guang Yang
  • Jing Wang
  • Hailong Liu
  • Renhe Zhang
  • Weiqing Han
Article

Abstract

The rectification of intraseasonal wind forcing on interannual sea surface temperature anomalies (SSTA) and sea level anomalies (SLA) associated with El Niño–Southern Oscillation (ENSO) during 1993–2016 are investigated using the LICOM ocean general circulation model forced with daily winds. The comparisons of the experiments with and without the intraseasonal wind forcing have shown that the rectified interannual SSTA and SLA by the intraseasonal winds are much weaker than the total interannual SSTA and SLA in the cold tongue, due to the much weaker rectified than the total interannual Kelvin and Rossby waves in the equatorial Pacific Ocean. The dynamics of the rectification are through the nonlinear zonal and vertical advection by the background currents, which produces downwelling equatorial Kelvin waves during El Niño. The meridional advection is much smaller than the zonal and vertical advection, suggesting that the rectification is not induced by the Ekman dynamics or the thermocline rectification. The rectified interannual Kelvin waves are found to be much smaller than reflected at the Pacific western boundary and those forced by the interannual winds, suggesting that the latter two play a much more important role in ENSO dynamics than the intraseasonal winds. The results of this study suggest an unlikely significant role of oceanic nonlinear rectification by intraseasonal winds during the onset and cycling of El Niño.

Keywords

Intraseasonal rectification Interannual variability ENSO Kelvin and Rossby waves Nonlinear oceanic dynamics 

Notes

Acknowledgements

This work was supported jointly by NSFC (41421005, 41375094, 41406028, 41720104008, 41776011), QMSNL (2016ASKJ12), CAS (XDA11010102, XDA11010205), and the Shandong Provincial projects (U1406401). We thank the Aviso project, Hadley Center, and NCEP for sharing their data.

References

  1. Bergman JW, Hendon HH, Weickmann KM (2001) Intraseasonal air–sea interactions at the onset of El Niño. J Clim 14:1702–1719CrossRefGoogle Scholar
  2. Boulanger JP, Menkes C (1999) Long equatorial wave reflection in the Pacific Ocean from TOPEX/POSEIDON data during the 1992–1998 period. Clim Dyn 15:205–225CrossRefGoogle Scholar
  3. Boulanger JP, Cravatte S, Menkes C (2003) Reflected and locally wind-forced interannual equatorial Kelvin waves in the western Pacific Ocean. J Geophys Res 108(C10):3311.  https://doi.org/10.1029/2002JC001760 CrossRefGoogle Scholar
  4. Chen D, Lian T, Fu C, Cane MA, Tang Y, Murtugudde R et al (2015) Strong influence of westerly wind bursts on El niño diversity. Nat Geosci 8:339–345CrossRefGoogle Scholar
  5. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597.  https://doi.org/10.1002/qj.828 CrossRefGoogle Scholar
  6. Fedorov AV, Hu S, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim Dyn 44:1381CrossRefGoogle Scholar
  7. Hendon HH, Zhang C, Glick JD (1999) Interannual variation of the Madden–Julian oscillation during austral summer. J Clim 12:2538–2550CrossRefGoogle Scholar
  8. Hendon HH, Wheeler MC, Zhang C (2007) Seasonal dependence of the MJO–ENSO relationship. J Clim 20:531–543CrossRefGoogle Scholar
  9. Hu S, Fedorov AV (2016) Exceptionally strong easterly wind burst stalling El Niño of 2014. (EARTH, ATMOSPHERIC AND PLANETARY SCIENCES) (Report). In: Proceedings of the National Academy of Sciences of the United States, vol 113(8), 2005Google Scholar
  10. Jin FF (1997a) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  11. Jin FF (1997b) An equatorial ocean recharge paradigm for ENSO. Part II: a stripped-down coupled model. J Atmos Sci 54:830–847CrossRefGoogle Scholar
  12. Kalnay et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470CrossRefGoogle Scholar
  13. Kessler WS, Kleeman R (2000) Rectification of the Madden–Julian oscillation into the ENSO cycle. J Clim 13:3560–3575CrossRefGoogle Scholar
  14. Kessler WS, McPhaden MJ, Weickmann KM (1995) Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J Geophys Res 100:10613–10631CrossRefGoogle Scholar
  15. Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models—the data sets and flux climatologies NCAR Technical Note NCAR/TN-460 + STRGoogle Scholar
  16. Large WG, Yeager SG (2009) The global climatology of an interannually varying air–sea flux data set. Clim Dyn 33:341–364CrossRefGoogle Scholar
  17. Lengaigne M, Guilyardi E, Boulanger JP, Menkes C, Delecluse P, Inness P, Cole J, Slingo J (2004a) Triggering of El Nino by westerly wind events in a coupled general circulation model. Clim Dyn 23(6):601–620CrossRefGoogle Scholar
  18. Lengaigne M, Boulanger JP, Menkes C, Delecluse P, Slingo J (2004b) Westerly wind events in the tropical Pacific and their influence on the coupled ocean–atmosphere system: a review. In: Wang C, Xie SP, Carton JA (eds) Earth’s climate: the ocean–atmosphere interaction. Geophys Monogr Ser, vol 147. AGU, Washington, D. C, pp 49–69Google Scholar
  19. Levitus S, Boyer TP (1994) World Ocean Atlas 1994 Volume 4: Temperature. NOAA Atlas NESDIS 4. U.S. Department of Commerce, Washington, DC, p 117Google Scholar
  20. Levitus S, Burgett R Boyer TP (1994). World Ocean Atlas 1994 Volume 3: Salinity. NOAA Atlas NESDIS 3. U.S. Department of Commerce, Washington, DC, p 99Google Scholar
  21. Liu H, Yu Y, Li W, Zhang X (2004) LASG/IAP climate system ocean model (LICOM1.0), User manual (in Chinese). Science Publication, Washington, DCGoogle Scholar
  22. Liu H, Li W, Zhang X (2005) Climatology and variability of the Indonesian throughflow in an eddy-permitting oceanic GCM. Adv Atmos Sci 22:496–508CrossRefGoogle Scholar
  23. Lukas R, Lindstrom E (1991) The mixed layer of the western equatorial Pacific Ocean. J Geophys Res 96:3343–3357.  https://doi.org/10.1029/90JC01951 CrossRefGoogle Scholar
  24. Lukas R, Hayes SP, Wyrtki K (1984) Equatorial sea level response during the 1982–1983 El Niño. J Geophys Res 89:10425–10430CrossRefGoogle Scholar
  25. Luther DS, Harrison DE, Knox RA (1983) Zonal winds in the central equatorial pacific and El niño. Science 222:327–330CrossRefGoogle Scholar
  26. Madden R, Julian P (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708CrossRefGoogle Scholar
  27. Madden R, Julian P (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29:1109–1123CrossRefGoogle Scholar
  28. McPhaden MJ (1999) Genesis and evolution of the 1997– 98 El Niño. Science 283:950–954CrossRefGoogle Scholar
  29. Menkes CE, Lengaigne M, Vialard J, Puy M, Marchesiello P, Cravatte S, Cambon G (2014) About the role of westerly wind events in the possible development of an El Niño in 2014. Geophys Res Lett 41(18):6476–6483CrossRefGoogle Scholar
  30. Moore AM, Kleeman R (1999) Stochastic forcing of ENSO by the intraseasonal oscillation. J Clim 12:1199–1220CrossRefGoogle Scholar
  31. Packnowski RC, Philander SGH (1981) Parameterization of vertical mixing in numerical models of the tropical ocean. J Phys Oceanogr 11:1442–1451Google Scholar
  32. Picaut J, Masia F, Penhoat Y (1997) An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 277:663–666CrossRefGoogle Scholar
  33. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407.  https://doi.org/10.1029/2002JD002670 CrossRefGoogle Scholar
  34. Rong X, Zhang R, Li T, Su J (2011) Upscale feedback of high-frequency winds to ENSO. Q J R Meteorol Soc 137:894–907CrossRefGoogle Scholar
  35. Roundy PE, Kiladis GN (2006) Observed relationships between intraseasonal oceanic Kelvin waves and atmospheric forcing. J Clim 19:5253–5272CrossRefGoogle Scholar
  36. Schopf PS, Suarez MJ (1988) Vacillations in a coupled oceanatmosphere model. J Atmos Sci 45:549–566CrossRefGoogle Scholar
  37. Shinoda T, Roundy PE, Kiladis GN (2008) Variability of intraseasonal kelvin waves in the equatorial Pacific Ocean. J Phys Oceanogr 38:921–944.  https://doi.org/10.1175/2007JPO3815.1 CrossRefGoogle Scholar
  38. Slingo J, Rowell DF, Sperber KR, Nortley F (1999) On the predictability of interannual behavior of the Madden–Julian Oscillation and its relationship to El Niño. Q J R Meteorol Soc 125:583–609Google Scholar
  39. Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287CrossRefGoogle Scholar
  40. Wang Z, Yuan D (2012) Nonlinear dynamics of two western boundary currents colliding at a gap. J Phys Oceanogr 42:2030–2040.  https://doi.org/10.1175/JPO-D-12-05.1 CrossRefGoogle Scholar
  41. Wang Z, Yuan D (2014) Multiple equilibria and hysteresis of two unequal-transport western boundary currents colliding at a gap. J Phys Oceanogr 44(7):1873–1885CrossRefGoogle Scholar
  42. Weisberg RH, Wang C (1997) Awestern Pacific oscillator paradigm for the El Nino–Southern Oscillation. Geophys Res Lett 24(7):779–782CrossRefGoogle Scholar
  43. Yuan D, Liu H (2009) Long wave dynamics of sea level variations during Indian Ocean dipole events. J Phys Oceanogr 39:1115–1132CrossRefGoogle Scholar
  44. Yuan D, Wang Z (2011) Hysteresis and dynamics of a western boundary current flowing by a gap forced by impingement of mesoscale eddies. J Phys Oceanogr 41:878–888.  https://doi.org/10.1175/2010JPO4489.1 CrossRefGoogle Scholar
  45. Yuan D, Rienecker MM, Schopf PS (2004) Long wave dynamics of the interannual variability in a numerical hindcast of the equatorial Pacific Ocean circulation during the 1990s. J Geophys Res 109:C05019.  https://doi.org/10.1029/2003JC001936 Google Scholar
  46. Yuan DL, Xiang Li, Wang Z, Yao Li, Wang J, Yang Y, Xiaoyue H, Shuwen T, Hui Z et al (2018) Observed transport variations in the Maluku Channel of the Indonesian Seas associated with western boundary current changes. J Phys Oceanogr.  https://doi.org/10.1175/JPO-D-17-0120.1 Google Scholar
  47. Zebiak SE (1989) On the 30–60 day oscillation and the prediction of El Niño. J Clim 2:1381–1387CrossRefGoogle Scholar
  48. Zhang CD, Gottschalck J (2002) SST anomalies of ENSO and the Madden–Julian oscillation in the equatorial Pacific. J Clim 15:2429–2445CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Ocean Circulation and Waves, Institute of OceanologyChinese Academy of Sciences and Pilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina
  2. 2.Center for Ocean Mega-ScienceChinese Academy of SciencesQingdaoChina
  3. 3.Center for Ocean and Climate Research, First Institute of OceanographyState Oceanic AdministrationQingdaoChina
  4. 4.Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  5. 5.University of Chinese Academy of SciencesBeijingChina
  6. 6.National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  7. 7.Institute of Atmospheric SciencesFudan UniversityShanghaiChina
  8. 8.Department of Atmospheric and Oceanic SciencesUniversity of ColoradoBoulderUSA

Personalised recommendations