Advertisement

Global diurnal temperature range (DTR) changes since 1901

  • Xiubao Sun
  • Guoyu RenEmail author
  • Qinglong You
  • Yuyu Ren
  • Wenhui Xu
  • Xiaoying Xue
  • Yunjian Zhan
  • Siqi Zhang
  • Panfeng Zhang
Article
  • 206 Downloads

Abstract

Previous observational analyses show that the land-surface diurnal temperature range (DTR) has decreased in the past 6 decades worldwide. Based on a newly developed China Meteorological Administration–Land Surface Air Temperature (CMA-LSAT) dataset, we analyzed the DTR changes between 1901 and 2014. Results indicate that the global land surface DTR significantly decreased at a rate of − 0.036 °C decade− 1 over the 1901–2014 period, mainly due to the large decrease in DTR from 1951 to 2014. For the first half of the twentieth century, most grid boxes (spatial resolution 5° × 5°) show a positive DTR trend, with the positive trends of 32.4% grid boxes being statistically significant, leading to a large and significant increase of 0.048 °C decade− 1 in DTR. However, a dramatic reversal in DTR change occurred in early 1950s, with most parts of global lands exhibiting a shift from increasing to decreasing trends. The global land average DTR decrease during 1951–2014 was − 0.054 °C decade− 1, with 45.0% grid boxes showing significant negative trends. The reverse phenomenon is more obvious in the Northern Hemisphere than that in the Southern Hemisphere. For the periods 1979–2014 and 1998–2014, the decreasing trends in DTR mainly occur in the Northern Hemisphere. The DTR in the Southern Hemisphere experienced much larger increases during the two recent periods than during the period 1951–2014. Asia, Eastern North America, and Australia exhibited widespread decreases in DTR, although the trend pattern for global DTR is generally mixed during 1979–2014 and 1998–2014. There is a good negative correlation between DTR and precipitation in the Northern Hemisphere from 1901 to 2014, with a correlation coefficient of − 0.61. The change in precipitation and number of volcanic eruptions, and the “early brightening” of Europe (Stockholm) all benefit the increase of DTR at global and regional scales in the first half of the twentieth century.

Keywords

DTR Trends Maximum temperature Minimum temperature Global lands 

Notes

Acknowledgements

This study is financed by the National Key R&D Program of China (Fund No: 2018YFA0605603), China Natural Science Foundation (CNSF) (Fund No: 41575003) and the MOST (Fund No: GYHY201206012).

References

  1. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Tank AMGK, Haylock M, Collins D, Trewin B, Rahimzadeh F (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111(D5):1042–1063CrossRefGoogle Scholar
  2. Braganza K, Karoly DJ, Arblaster JM (2004) Diurnal temperature range as an index of global climate change during the twentieth century. Geophys Res Lett 31(13):405–407CrossRefGoogle Scholar
  3. Che HZ, Shi GY, Zhang XY, Arimoto R, Zhao JQ, Xu L, Wang B, Chen ZH (2005) Analysis of 40 years of solar radiation data from China, 1961–2000. Geophys Res Lett 32:L06803.  https://doi.org/10.1029/2004GL022322 CrossRefGoogle Scholar
  4. Croke MS, Cess RD, Hameed S (1999) Regional cloud cover change associated with 15 global climate change: case studies for three regions of the United States. J Clim 12:2128–2134CrossRefGoogle Scholar
  5. Dai A, Genio ADD, Fung IY (1997) Clouds, precipitation and temperature range. Nature 386(6626):665–666CrossRefGoogle Scholar
  6. Dai A, Trenberth KE, Karl TR (1999) Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J Clim 12(8):2451–2473CrossRefGoogle Scholar
  7. Dai A, Karl TR, Sun B, Trenberth KE (2006) Recent trends in cloudiness over the United States: a tale of monitoring inadequacies. Bull Am Meteor Soc 87(5):597–606CrossRefGoogle Scholar
  8. Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, Salinger MJ, Razuvayev V, Plummer N, Jamason P (1997) Maximum and minimum temperature trends for the globe. Science 277(5324):364–367CrossRefGoogle Scholar
  9. Easterling DR, Gleason B, Vose RS, Stouffer R (2006) A comparison of model produced maximum and minimum temperature trends with observed trends for the 20th and 21st centuries. In: 18th conference on climate variability and change, Session 5, January 27–February, 2006, Atlanta, USAGoogle Scholar
  10. Fyfe JC, Gillett NP (2014) Recent observed and simulated warming. Nat Clim Change 4(3):150–151CrossRefGoogle Scholar
  11. Fyfe JC, Meehl GA, England MH, Mann ME, Santer BD, Flato GM, Hawkins E, Gillett NP, Xie SP, Yu K (2016) Making sense of the early-2000s warming slowdown. Nat Clim Change 6(3):224–228CrossRefGoogle Scholar
  12. Henderson-Sellers A (1989) North American total cloud amount variations this century. Global Planet Change 1:175–194CrossRefGoogle Scholar
  13. Henderson-Sellers A (1992) Continental cloudiness changes this century. Geo J 27:255–262Google Scholar
  14. Huang Y, Dickinson R, ChameidesWL (2006) Impact of aerosol indirect effect on surface temperature over East Asia. Proc Natl Acad Sci USA 103(12):4371–4376CrossRefGoogle Scholar
  15. Hundecha Y, Bárdossy A (2005) Trends in daily precipitation and temperature extremes across western Germany in the second half of the 20th century. Int J Climatol 25(9):1189–1202CrossRefGoogle Scholar
  16. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1535.  https://doi.org/10.1017/CBO9781107415324 Google Scholar
  17. Jaagus J, Briede A, Rimkus E, Remm K (2014) Variability and trends in daily minimum and maximum temperatures and in the diurnal temperature range in Lithuania, Latvia and Estonia in 1951–2010. Theor Appl Climatol 118(1–2):57–68CrossRefGoogle Scholar
  18. Jones PA, Hendersonsellers A (1992) Historical records of cloudiness and sunshine in Australia. J Clim 5(3):260–270CrossRefGoogle Scholar
  19. Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J Clim 16(2):206–223CrossRefGoogle Scholar
  20. Jones PD, Osborn TJ, Briffa KR, Folland CK, Horton EB, Alexander LV, Parker DE, Rayner NA (2001) Adjusting for sampling density in grid box land and ocean surface temperature time series. J Geophys Res 106(D4):3371–3380CrossRefGoogle Scholar
  21. Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423(6939):528–531CrossRefGoogle Scholar
  22. Karl TR, Steurer PM (1990) Increased cloudiness in the United States during the first half of nthe twentieth century: fact or fiction? Geophys Res Lett 17:1925–1928CrossRefGoogle Scholar
  23. Karl TR, Knight RW, Gallo KP, Peterson TC, Jones PD, Kukla G, Plummer N, Razuvayev V, Lindseay J, Charlson RJ (1993) A new perspective on recent global warming: asymmetric trends of daily maximum and minimum temperature. Bull Am Meteor Soc 74(6):1007–1024CrossRefGoogle Scholar
  24. Kerr RA (2009) What happened to global warming? Scientists say just wait a bit. Science 326(5949):28–29CrossRefGoogle Scholar
  25. Klein Tank AMG, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–1999. J Clim 16(22):3665–3680CrossRefGoogle Scholar
  26. Kumar KR, Kumar KK, Pant GB (1994) Diurnal asymmetry of surface temperature trends over India. Geophys Res Lett 21(8):677–680CrossRefGoogle Scholar
  27. Li Q, Yang S, Xu W, Wang XL, Jones P, Parker D, Zhou L, Feng Y, Gao Y (2015) China experiencing the recent warming hiatus. Geophys Res Lett 42(3):889–898CrossRefGoogle Scholar
  28. Long CN, Dutton EG, Augustine JA, Wiscombe W, Wild M, McFarlane SA, Flynn CJ (2009) Significant decadal brightening of down welling shortwave in the continental United States. J Geophys Res 114:D00D06.  https://doi.org/10.1029/2008JD011263 CrossRefGoogle Scholar
  29. Lough JM, Wigley TML, Palutikof JP (1983) Climate and climate impact scenarios for Europe in a warmer world. J Appl Meteorol 22(22):1673–1684CrossRefGoogle Scholar
  30. Makowski K, Wild M, Ohmura A (2008) Diurnal temperature range over Europe between 1950 and 2005. Atmos Chem Phys 8(21):6483–6498CrossRefGoogle Scholar
  31. Makowski K, Jaeger EB, Chiacchio M, Wild M, Ewen T, Ohmura A (2009) On the relationship between diurnal temperature range and surface solar radiation in Europe. J Geophys Res 114(D10):1–16.  https://doi.org/10.1029/2008JD011104 Google Scholar
  32. Maugeri M, Bagnati Z, Brunetti M, Nanni T (2001) Trends in Italian total cloud amount, 1951–1996. Geophys Res Lett 28:4551–4554.  https://doi.org/10.1029/2001GL013754 CrossRefGoogle Scholar
  33. Peterson TC, Vose RS (1997) An overview of the global historical climatology network temperature database. Bull Am Meteorol Soc 78(12):2837–2849CrossRefGoogle Scholar
  34. Powell EJ, Keim BD (2014) Trends in daily temperature and precipitation extremes for the southeastern United States: 1948–2012. J Clim 28(4):1592–1612CrossRefGoogle Scholar
  35. Qian Y, Wang L, Leung LR, Kaiser DP (2007) Variability of solar radiation under cloud-free skies in China: The role of aerosols. Geophys Res Lett 34(12):2111–2121.  https://doi.org/10.1029/2006GL028800 CrossRefGoogle Scholar
  36. Ren G, Zhou Y, Chu Z, Zhou J, Zhang A, Guo J, Liu X (2006) Urbanization effects on observed surface air temperature trends in North China. J Clim 21(6):1333–1348CrossRefGoogle Scholar
  37. Ren G, Ren Y, Li Q, Xu W (2014) An overview on global land surface air temperature change. Adv Earth Sci 29(8):934–946 (in Chinese) Google Scholar
  38. Ren G, Ren Y, Zhan Y, Sun X, Liu Y, Chen Y, Wang T (2015) Spatial and temporal patterns of precipitation variability over mainland China: II: recent trends. Adv Water Sci 26(4):451–465 (in Chinese) Google Scholar
  39. Río SD, Cano-Ortiz A, Herrero L, Penas A (2012) Recent trends in mean maximum and minimum air temperatures over Spain (1961–2006). Theor Appl Climatol 109(3–4):605–626Google Scholar
  40. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38(2):191–219CrossRefGoogle Scholar
  41. Romanou AB, Liepert B, Schmidt GA, Rossow WB, Ruedy RA, Zhang Y (2007) 20th century changes in surface solar irradiance in simulations and observations. Geophys Res Lett 34(5):89–103.  https://doi.org/10.1029/2006GL028356 CrossRefGoogle Scholar
  42. Salinger MJ, Griffiths GM (2001) Trends in New Zealand daily temperature and rainfall extremes. Int J Climatol 21(12):1437–1452CrossRefGoogle Scholar
  43. Samba G, Nganga D (2014) Minimum and maximum temperature trends in Congo-Brazzaville: 1932–2010. Atmos Clim Sci 04(3):404–430Google Scholar
  44. Sanchez-Lorenzo A, Calbó J, Wild M (2012) Increasing cloud cover in the 20th century: review and new findings in Spain. Clim Past 8(4):1199–1212CrossRefGoogle Scholar
  45. Shen X, Liu B, Li G, Wu Z, Jin Y, Yu P, Zhou D (2015) Spatiotemporal change of diurnal temperature range and its relationship with sunshine duration and precipitation in China. J Geophys Res 119(23):13163–13179Google Scholar
  46. Stone DA, Weaver AJ (2002) Daily maximum and minimum temperature trends in a climate model. Geophys Res Lett 29(9):70-1–70-4CrossRefGoogle Scholar
  47. Sun X, Ren G, Bhaka SA, Ren Y, You Q, Zhan Y, Xu Y, Rajbhandari R (2017a) Changes in extreme temperature events over the Hindu Kush Himalaya during 1961–2015. Adv Clim Change Res 8(3):157–165CrossRefGoogle Scholar
  48. Sun X, Ren G, Xu W, Li Q, Ren Y (2017b) Global land-surface air temperature change based on the new CMA GLSAT data set. Sci Bull 62(4):236–238CrossRefGoogle Scholar
  49. Sun X, Ren G, Ren Y, Fang Y, Liu Y, Xue X, Zhang P (2017c) A remarkable climate warming hiatus over Northeast China since 1998. Theor Appl Climatol.  https://doi.org/10.1007/s00704-017-2205-7 Google Scholar
  50. Thorne PW, Donat MG, Dunn RJH, Dunn H, Williams CN, Alexander LV, Caesar J, Durre I, Harris I, Hausfather Z, Jones PD, Menne MJ, Rohde R, Vose RS, Davy R, Klein-Tank AMG, Lawrimore JH, Peterson TC, Rennie JJ (2016) Reassessing changes in diurnal temperature range: intercomparison and evaluation of existing global data set estimates. J Geophys Res.  https://doi.org/10.1002/2015JD024584 Google Scholar
  51. Vose RS, Easterling DR, Gyron G (2005) Maximum and minimum temperature trends for the globe: an update through 2004. Geophys Res Lett.  https://doi.org/10.1029/2005GL024379 Google Scholar
  52. Wang K, Dickinson RE (2013) Contribution of solar radiation to decadal temperature variability over land. Proc Natl Acad Sci USA 110(37):14877–14882CrossRefGoogle Scholar
  53. Wang K, Ye H, Chen F, Xiong Y, Wang C (2012) Urbanization effect on the diurnal temperature range: different roles under solar dimming and brightening. J Clim 25(3):1022–1027CrossRefGoogle Scholar
  54. Wang H, Hao Z, Zheng J (2014) Temporal and spatial distribution characteristics of strong volcanic eruption in 1750–2010. Acta Geogr Sin 69(1):134–140 (in Chinese) Google Scholar
  55. Warren SG, Eastman RM, Hahn CJ (2007) A survey of changes in cloud cover and cloud types over land from surface. J Clim 20:717–738CrossRefGoogle Scholar
  56. Wild M (2008) Decadal changes in surface radiative fluxes and their importance in the context of global climate change. In: Climate Variability and Extremes During the Past 100 Years. Adv. Global Change Res. Ser. Springer, New YorkGoogle Scholar
  57. Wild M (2009) How well do IPCC-AR4/CMIP3 climate models simulate global dimming/brightening and twentieth-century daytime and nighttime warming? J Geophys Res 114:D00D11.  https://doi.org/10.1029/2008JD011372 Google Scholar
  58. Wild M, Gilgen H, Roesch A, Ohmura A, Long CN, Dutton EG, Forgan B, Kallis A, Russak V, Tsvetkov A (2005) From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308(5723):847–850CrossRefGoogle Scholar
  59. Wild M, Ohmura A, Makowski K (2007) Impact of global dimming and brightening on global warming. Geophys Res Lett 34(4):545–559CrossRefGoogle Scholar
  60. Xia X (2010) Spatiotemporal changes in sunshine duration and cloud amount as well as their relationship in China during 1954–2005. J Geophys Res Atmos 115:D00K06.  https://doi.org/10.1029/2009JD012879 CrossRefGoogle Scholar
  61. Xu W, Li Q, Jones P, Wang X, Trewin B, Yang S, Zhu C, Zhai P, Wang J, Vincent L (2017) A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900. Clim Dyn.  https://doi.org/10.1007/s00382-017-3755-1 Google Scholar
  62. Yang S, Xu W, Xu Y, Li Q (2016) Development of a global historic monthly mean precipitation dataset. J Meteorol Res 30(2):217–231CrossRefGoogle Scholar
  63. Zhai P, Pan X (2003) Trends in temperature extremes during 1951–1999 in China. Geophys Res Lett 30(17):169–172CrossRefGoogle Scholar
  64. Zhan YJ, Ren GY, Yang S (2018) Change in precipitation over Asian continent from 1901 to 2016 based on a new multi-source dataset. Clim Res.  https://doi.org/10.3354/cr01523 Google Scholar
  65. Zhang X, Vincent L, Hogg W, AinNiitsoo (2000) Temperature and precipitation trends in Canada during the 20th century. Atmosphere 38(3):395–429Google Scholar
  66. Zhou L, Hansen JE (2004) Evidence for a significant urbanization effect on climate in China. Proc Natl Acad Sci USA 101(26):9540–9544CrossRefGoogle Scholar
  67. Zhou Y, Ren G (2011) Change in extreme temperature event frequency over mainland China, 1961–2008. Clim Res 50(1–2):125–139CrossRefGoogle Scholar
  68. Zhou L, Dickinson R, Dirmeyer P, Chen H, Dai Y, Tian Y (2008) Asymmetric response of maximum and minimum temperatures to soil emissivity change over the Northern African Sahel in a GCM. Geophys Res Lett 35(5):1–6.  https://doi.org/10.1029/2007GL032953 CrossRefGoogle Scholar
  69. Zhou L, Dickinson RE, Dirmeyer P, Dai A, Min SK (2009) Spatiotemporal patterns of changes in maximum and minimum temperatures in multi-model simulations. Geophys Res Lett 36:L02702.  https://doi.org/10.1029/2008GL036141 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiubao Sun
    • 1
    • 2
    • 3
  • Guoyu Ren
    • 2
    • 3
  • Qinglong You
    • 1
  • Yuyu Ren
    • 3
  • Wenhui Xu
    • 4
  • Xiaoying Xue
    • 2
    • 3
  • Yunjian Zhan
    • 4
  • Siqi Zhang
    • 3
  • Panfeng Zhang
    • 2
  1. 1.College of Atmospheric ScienceNanjing University of Information Science and Technology (NUIST)NanjingChina
  2. 2.Department of Atmospheric Science, School of Environmental StudiesChina University of Geosciences (CUG)WuhanChina
  3. 3.Laboratory for Climate Studies, National Climate CenterChina Meteorological Administration (CMA)BeijingChina
  4. 4.National Meteorological Information CenterChina Meteorological Administration (CMA)BeijingChina

Personalised recommendations