Advertisement

Climate Dynamics

, Volume 52, Issue 5–6, pp 2923–2942 | Cite as

On the physical interpretation of the lead relation between Warm Water Volume and the El Niño Southern Oscillation

  • Takeshi IzumoEmail author
  • Matthieu Lengaigne
  • Jérôme Vialard
  • Iyyappan Suresh
  • Yann Planton
Article

Abstract

The Warm Water Volume (WWV), a proxy for the equatorial Pacific heat content, is the most widely used oceanic precursor of the El Niño Southern Oscillation (ENSO). The standard interpretation of this lead relation in the context of the recharge oscillator theory is that anomalous easterlies during, e.g. La Niña, favour a slow recharge of the equatorial band that will later favour a transition to El Niño. Here we demonstrate that WWV only works as the best ENSO predictor during boreal spring, i.e. during ENSO onset, in both observations and CMIP5 models. At longer lead times, the heat content in the western Pacific (WWVW) is the best ENSO predictor, as initially formulated in the recharge oscillator theory. Using idealised and realistic experiments with a linear continuously stratified ocean model, and a comprehensive wave decomposition method, we demonstrate that spring WWV mostly reflects the fast Kelvin wave response to wind anomalies early in the year, rather than the longer-term influence of winds during the previous year. WWV is hence not an adequate index of the slow recharge invoked in the recharge oscillator. The WWVW evolution before spring is dominated by forced Rossby waves, with a smaller contribution from the western boundary reflection. WWVW can be approximated from the integral of equatorial wind stress over the previous ~ 10 months, thus involving a longer-term time scale than WWV main time scale (~ 3 months). We hence recommend using WWVW rather than WWV as an index for the slow recharge before the spring predictability barrier.

Keywords

El Niño Southern Oscillation (ENSO) Warm Water Volume (WWV) ENSO recharge oscillator Equatorial Kelvin and Rossby waves ENSO precursors ENSO conceptual models CMIP5 climate models 

Notes

Acknowledgements

Takeshi Izumo, Matthieu Lengaigne, and Jérome Vialard, funded by IRD, gratefully acknowledge the CSIR-National Institute of Oceanography (NIO, Goa, India) for hosting them during their stays there, and would like to thank their colleagues at NIO for their hospitality and help. This work was mainly done while TI and ML were visiting scientists at the NIO, under Institut de Recherche pour le Développement (IRD) funding. Yann Planton was funded by the Belmont project GOTHAM, under Grant ANR-15-JCLI-0004-01. This is NIO contribution 6244. The NOAA FERRET software was used here for analysis.

Supplementary material

382_2018_4313_MOESM1_ESM.pdf (3.3 mb)
Supplementary material 1 (PDF 3381 KB)

References

  1. Alory G, Delcroix T (2002) Interannual sea level changes and associated mass transports in the tropical Pacific from TOPEX/Poseidon data and linear model results (1964–1999). J Geophys Res Ocean 107(C10):3153.  https://doi.org/10.1029/2001JC001067 Google Scholar
  2. Ballester J, Bordoni S, Petrova D, Rodó X (2015) On the dynamical mechanisms explaining the western Pacific subsurface temperature buildup leading to ENSO events. Geophys Res Lett 42:2961–2967.  https://doi.org/10.1002/2015GL063701 Google Scholar
  3. Ballester J et al (2016) Sensitivity of El Niño intensity and timing to preceding subsurface heat magnitude. Sci Rep 6:36344.  https://doi.org/10.1038/srep36344 Google Scholar
  4. Barnston AG, Tippett MK, L’Heureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull Am Meteorol Soc 93(5):631–651.  https://doi.org/10.1175/BAMS-D-11-00111.1 Google Scholar
  5. Battisti DS, Hirst AC (1989) Interannual variability in the tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 45:1687–1712Google Scholar
  6. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018.  https://doi.org/10.1007/s00382-013-1783-z Google Scholar
  7. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172Google Scholar
  8. Bosc C, Delcroix T (2008) Observed equatorial Rossby waves and ENSO-related warm water volume changes in the equatorial Pacific Ocean. J Geophys Res Ocean 113(C6):C06003.  https://doi.org/10.1029/2007JC004613 Google Scholar
  9. Boschat G, Terray P, Masson S (2013) Extratropical forcing of ENSO. Geophys Res Lett 40(8):1605–1611.  https://doi.org/10.1002/grl.50229 Google Scholar
  10. Boulanger J-P, Menkes C (1995) Propagation and reflection of long equatorial waves in the Pacific Ocean during the 1992–1993 El Niño. J Geophys Res Ocean 100(C12):25041–25059.  https://doi.org/10.1029/95JC02956 Google Scholar
  11. Boulanger J-P, Menkes C (2001) The TRIDENT Pacific model: II. The thermodynamical model and the role of long equatorial wave reflection during the 1993–1998 TOPEX/POSEIDON period. Clim Dyn 17:175–186.  https://doi.org/10.1007/PL00013734 Google Scholar
  12. Boulanger J-P, Menkes C, Lengaigne M (2004) Role of high- and low- frequency winds and wave reflection in the onset, growth and termination of the 1997–1998 El Niño. Clim Dyn 22(2–3):267–280.  https://doi.org/10.1007/s00382-003-0383-8 Google Scholar
  13. Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12(7):1990–2009Google Scholar
  14. Brown JN, Fedorov AV (2010) Estimating the diapycnal transport contribution to warm water volume variations in the tropical Pacific Ocean. J Clim 23:221–237.  https://doi.org/10.1175/2009JCLI2347.1 Google Scholar
  15. Brown JN, Langlais C, Maes C (2014) Zonal structure and variability of the Western Pacific dynamic warm pool edge in CMIP5. Clim Dyn 42:3061–3076.  https://doi.org/10.1007/s00382-013-1931-5 Google Scholar
  16. Burgers G et al (2005) The simplest ENSO recharge oscillator. Geophys Res Lett 32(13):L13706.  https://doi.org/10.1029/2005GL022951 Google Scholar
  17. Capotondi A, Wittenberg AT, Newman M et al (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96(6):921–938.  https://doi.org/10.1175/BAMS-D-13-00117.1 Google Scholar
  18. Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136(8):2999–3017Google Scholar
  19. Chen D, Zebiak SE, Busalacchi AJ, Cane MA (1995) An improved procedure for El Nino forecasting: implications for predictability. Science 269(5231):1699–1702.  https://doi.org/10.1126/science.269.5231.1699 Google Scholar
  20. Christensen JH, Krishna Kumar K, Aldrian E et al (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1217–1308Google Scholar
  21. Cibot C, Maisonnave E, Terray L, Dewitte B (2005) Mechanisms of tropical Pacific interannual-to-decadal variability in the ARPEGE/ORCA global coupled model. Clim Dyn 24:823.  https://doi.org/10.1007/s00382-004-0513-y Google Scholar
  22. Clarke AJ (2008) An introduction to the dynamics of El Niño and the Southern Oscillation. Elsevier (Academic Press), London. ISBN: 978-0-12-088548-0Google Scholar
  23. Clarke AJ (2010) Analytical theory for the quasi-steady and low-frequency equatorial ocean response to wind forcing: the tilt and warm water volume modes. J Phys Oceanogr 40(1):121–137.  https://doi.org/10.1175/2009JPO4263.1.Google Scholar
  24. Clarke AJ, Van Gorder S (2003) Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys Res Lett 30(7):1399.  https://doi.org/10.1029/2002GL016673 Google Scholar
  25. Clarke AJ, Van Gorder S, Colantuono G (2007) Wind stress curl and ENSO discharge/recharge in the equatorial Pacific. J Phys Oceanogr 37:1077–1091.  https://doi.org/10.1175/JPO3035.1 Google Scholar
  26. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28.  https://doi.org/10.1002/qj.776 Google Scholar
  27. Dayan H, Vialard J, Izumo T, Lengaigne M (2014) Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability? Clim Dyn.  https://doi.org/10.1007/s00382-013-1946-y Google Scholar
  28. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597.  https://doi.org/10.1002/qj.828 Google Scholar
  29. Dewitte B, Perigaud C (1996) El Niño-La Niña events simulated with Cane and Zebiak’s model and observed with satellite or in situ data. Part II: model forced with observations. J Clim 9(6):1188–1207Google Scholar
  30. Dominiak S, Terray P (2005) Improvement of ENSO prediction using a linear regression model with a southern Indian Ocean sea surface temperature predictor. Geophys Res Lett 32(18):L18707.  https://doi.org/10.1029/2005GL023153 Google Scholar
  31. Drosdowsky W (2006) Statistical prediction of ENSO (Niño 3) using sub-surface temperature data. Geophys Res Lett 33(3):L03710.  https://doi.org/10.1029/2005GL024866 Google Scholar
  32. Fedorov AV (2010) Ocean response to wind variations, warm water volume, and simple models of ENSO in the low-frequency approximation. J Clim 23:3855–3873.  https://doi.org/10.1175/2010jcli3044.1 Google Scholar
  33. Fedorov AV, Hu S, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim Dyn.  https://doi.org/10.1007/s00382-014-2126-4 Google Scholar
  34. Forget G, Ponte RM (2015) The partition of regional sea level variability. Prog Oceanogr 137:173–195.  https://doi.org/10.1016/j.pocean.2015.06.002 Google Scholar
  35. Gasparin F, Roemmich D (2017) The seasonal march of the equatorial Pacific upper-ocean and its El Niño variability. Prog Oceanogr 156:1–16.  https://doi.org/10.1016/j.pocean.2017.05.010 Google Scholar
  36. Giese BS, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res 116(C2):C02024.  https://doi.org/10.1029/2010JC006695 Google Scholar
  37. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462.  https://doi.org/10.1002/qj.49710644905 Google Scholar
  38. Gill AE (1982) Atmosphere–ocean dynamics (International Geophysics Series). Academic Press, LondonGoogle Scholar
  39. Graham NE, Barnett TP (1987) Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science 238(4827):657–659.  https://doi.org/10.1126/science.238.4827.657 Google Scholar
  40. Graham FS, Brown JN, Wittenberg AT, Holbrook NJ (2015) Reassessing conceptual models of ENSO. J Clim 28:9121–9142.  https://doi.org/10.1175/JCLI-D-14-00812.1 Google Scholar
  41. Graham FS, Wittenberg AT, Brown JN. Marsland SJ, Holbrook NJ (2017) Understanding the double peaked El Niño in coupled GCMs. Clim Dyn 48(5–6):2045–2063Google Scholar
  42. Hu S, Fedorov AV, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts on the diversity and predictability of El Niño events: an ocean energetics perspective. Geophys Res Lett 41:4654–4663.  https://doi.org/10.1002/2014GL059573 Google Scholar
  43. Izumo T (2005) The equatorial undercurrent, meridional overturning circulation, and their roles in mass and heat exchanges during El Niño events in the tropical Pacific Ocean. Ocean Dyn 55(2):110–123.  https://doi.org/10.1007/s10236-005-0115-1 Google Scholar
  44. Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera SK, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat Geosci 3:168–172.  https://doi.org/10.1038/ngeo760 Google Scholar
  45. Izumo T, Lengaigne M, Vialard J, Luo J-J, Yamagata T, Madec G (2014) Influence of Indian Ocean Dipole and Pacific recharge on following year’s El Niño: interdecadal robustness. Clim Dyn 42(1–2):291–310.  https://doi.org/10.1007/s00382-012-1628-1 Google Scholar
  46. Izumo T, Vialard J, Dayan H, Lengaigne M, Suresh I (2016) A simple estimation of equatorial Pacific response from windstress to untangle Indian Ocean Dipole and Basin influences on El Niño. Clim Dyn 46(7):2247–2268.  https://doi.org/10.1007/s00382-015-2700-4 Google Scholar
  47. Jin FF (1997a) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829Google Scholar
  48. Jin FF (1997b) An equatorial ocean recharge paradigm for ENSO. Part II: a stripped-down coupled model. J Atmos Sci 54:830–847Google Scholar
  49. Jin FF, An SI (1999) Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys Res Lett 26:2989–2992.  https://doi.org/10.1029/1999GL002297 Google Scholar
  50. Jourdain NC, Lengaigne M, Vialard J, Izumo T, Gupta AS (2016) Further insights on the influence of the Indian Ocean dipole on the following year’s ENSO from observations and CMIP5 models. J Clim 29(2):637–658.  https://doi.org/10.1175/JCLI-D-15-0481.1 Google Scholar
  51. Kessler WS (2002) Is ENSO a cycle or a series of events? Geophys Res Lett 29(23):2125.  https://doi.org/10.1029/2002GL015924 Google Scholar
  52. Kug JS, Sooraj KP, Li T, Jin FF (2010) Precursors of the El Niño/La Niña onset and their interrelationship. J Geophys Res 115(D5):D05106.  https://doi.org/10.1029/2009JD012861 Google Scholar
  53. Lai AWC, Herzog M, Graf HF (2015) Two key parameters for the El Niño continuum: zonal wind anomalies and Western Pacific subsurface potential temperature. Clim Dyn 45(11–12):3461–3480.  https://doi.org/10.1007/s00382-015-2550-0 Google Scholar
  54. Lengaigne M, Boulanger JP, Menkes C, Delecluse P, Slingo J (2004a) Westerly Wind Events in the tropical Pacific and their influence on the coupled ocean–atmosphere system: a review. Earth’s Clim Ocean Atmos Interact.  https://doi.org/10.1029/147GM03 Google Scholar
  55. Lengaigne M, Guilyardi E, Boulanger JP, Menkes C, Delecluse P, Inness P, Cole J, Slingo J (2004b) Triggering of El Niño by Westerly Wind Events in a coupled general circulation model. Clim Dyn 23(6):601–620.  https://doi.org/10.1007/s00382-004-0457-2 Google Scholar
  56. Lengaigne M, Boulanger J-P, Menkes C, Spencer H (2006) Influence of the seasonal cycle on the termination of El Niño events in a coupled general circulation model. J Clim 19(9):1850–1868.  https://doi.org/10.1175/JCLI3706.1 Google Scholar
  57. Lengaigne M, Hausmann U, Madec G, Menkès C, Vialard J, Molines JM (2012) Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes. Clim Dyn 38(5–6):1031–1046.  https://doi.org/10.1007/s00382-011-1051-z Google Scholar
  58. Lima CH, Lall U, Jebara T, Barnston AG (2009) Statistical prediction of ENSO from subsurface sea temperature using a nonlinear dimensionality reduction. J Clim 22(17):4501–4519.  https://doi.org/10.1175/2009JCLI2524.1 Google Scholar
  59. Linz M, Tziperman E, MacMartin DG (2014) Process-based analysis of climate model ENSO simulations: intermodel consistency and compensating errors. J Geophys Res 119:7396–7409.  https://doi.org/10.1002/2013JD021415 Google Scholar
  60. Lloyd J, Guilyardi E, Weller H (2010) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: using AMIP runs to understand the heat flux feedback mechanisms. Clim Dyn 37:1271–1292.  https://doi.org/10.1007/s00382-010-0895-y Google Scholar
  61. Lu Q, Ruan Z, Wang DP, Chen D, Wu Q (2017) Zonal transport from the western boundary and its role in warm water volume changes during ENSO. J Phys Oceanogr 47(1):211–225.  https://doi.org/10.1175/JPO-D-16-0112.1 Google Scholar
  62. McCreary JP (1980) Modelling wind-driven ocean circulation. JIMAR 80-0029, HIG 80-3. Univ. of Hawaii, Honolulu, p 64Google Scholar
  63. McCreary JP, Han W, Shankar D, Shetye SR (1996) Dynamics of the East India Coastal Current: 2. Numerical solutions. J Geophys Res 101(C6):13993–14010.  https://doi.org/10.1029/96JC00560 Google Scholar
  64. McCreary JP, Miyama T, Furue R, Jensen T, Kang H-W, Bang B, Qu T (2007) Interactions between the Indonesian throughflow and circulations in the Indian and Pacific Oceans. Prog Oceanogr 75(1):70–114.  https://doi.org/10.1016/j.pocean.2007.05.004 Google Scholar
  65. McGregor S, Timmermann A, Jin FF, Kessler WS (2016) Charging El Niño with off-equatorial westerly wind events. Clim Dyn.  https://doi.org/10.1007/s00382-015-2891-8 Google Scholar
  66. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314(5806):1740–1745.  https://doi.org/10.1126/science.1132588 Google Scholar
  67. Meehl GA, Arblaster JM, Loschnigg J (2003) Coupled ocean-atmosphere dynamical processes in the tropical Indian and Pacific Ocean regions and the TBO. J Clim 16:2138–2158.  https://doi.org/10.1175/2767.1 Google Scholar
  68. Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim 13:3551–3559Google Scholar
  69. Neske S, McGregor S (2018) Understanding the warm water volume precursor of ENSO events and its interdecadal variation. Geophys Res Lett 45:1577–1585.  https://doi.org/10.1002/2017GL076439 Google Scholar
  70. Palanisamy H, Cazenave A, Delcroix T, Meyssignac B (2015) Spatial trend patterns in the Pacific Ocean sea level during the altimetry era: the contribution of thermocline depth change and internal climate variability. Ocean Dyn 65(3):341–356.  https://doi.org/10.1007/s10236-014-0805-7 Google Scholar
  71. Petrova D. Koopman SJ, Ballester J, Rodó X (2017) Improving the long-lead predictability of El Niño using a novel forecasting scheme based on a dynamic components model. Clim Dyn 48(3–4):1249–1276.  https://doi.org/10.1007/s00382-016-3139-y Google Scholar
  72. Philander SGH, Pacanowski RC (1980) The generation of equatorial currents. J Geophys Res 85(C2):1123–1136Google Scholar
  73. Picaut J, Masia F, du Penhoat Y (1997) An advective–reflective conceptual model for the oscillatory nature of the ENSO. Science 277:663–666.  https://doi.org/10.1126/science.277.5326.663 Google Scholar
  74. Praveen Kumar B, Vialard J, Lengaigne M, Murty VSN, Mcphaden MJ, Cronin MF, Pinsard F, Reddy KG (2013) TropFlux wind stresses over the tropical oceans: evaluation and comparison with other products. Clim Dyn 40(7–8):2049–2071.  https://doi.org/10.1007/s00382-012-1455-4 Google Scholar
  75. Puy M, Vialard J, Lengaigne M, Guilyardi E, DiNezio PN, Voldoire A, Mcphaden MJ (2017) Influence of Westerly Wind Events stochasticity on El Niño amplitude: the case of 2014 vs. 2015. Clim Dyn.  https://doi.org/10.1007/s00382-017-3938-9 Google Scholar
  76. Ramesh N, Murtugudde R (2013) All flavours of El Niño have similar early subsurface origins. Nat Clim Change 3(1):42–46.  https://doi.org/10.1038/nclimate1600 Google Scholar
  77. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407.  https://doi.org/10.1029/2002JD002670 Google Scholar
  78. Rebert JP, Donguy JR, Eldin G, Wyrtki K (1985) Relations between sea level, thermocline depth, heat content, and dynamic height in the tropical Pacific Ocean. J Geophys Res 90(C6):11719–11725Google Scholar
  79. Ruiz JE, Corder I, Sharma A (2005) Integrating ocean subsurface temperatures in statistical ENSO forecasts. J Clim 18(17):3571–3586.  https://doi.org/10.1175/JCLI3477.1 Google Scholar
  80. Shu L, Clarke AJ (2002) Using an ocean model to examine ENSO dynamics. J Phys Oceanogr 32(3):903–923Google Scholar
  81. Smith NR (1995) An improved system for tropical ocean subsurface temperature analyses. J Atmos Ocean Technol 12(4):850–870Google Scholar
  82. Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287Google Scholar
  83. Suresh I, Vialard J, Lengaigne M, Han W, McCreary J, Durand F, Muraleedharan PM (2013) Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide. Geophys Res Lett.  https://doi.org/10.1002/2013GL058312 Google Scholar
  84. Suresh I, Vialard J, Izumo T, Lengaigne M, Han W, McCreary JP, Muraleedharan PM (2016) Dominant role of winds near Sri Lanka in driving seasonal sea level variations along the west coast of India. Geophys Res Lett 43(13):7028–7035.  https://doi.org/10.1002/2016GL069976 Google Scholar
  85. Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38:1–5.  https://doi.org/10.1029/2011GL047364 Google Scholar
  86. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498.  https://doi.org/10.1175/BAMS-D-11-00094.1 Google Scholar
  87. Thual S,.Dewitte B, Ayoub N, Thual O (2013) An asymptotic expansion for the recharge–discharge model of ENSO. J Phys Oceanogr 43:1407–1416.  https://doi.org/10.1175/JPO-D-12-0161.1 Google Scholar
  88. Torrence C, Webster PJ (1998) The annual cycle of persistence in the El Nño/Southern Oscillation. Q J R Meteorol Soc 124(550):1985–2004Google Scholar
  89. Vialard J, Menkes C, Boulanger J-P, Delecluse P, Guilyardi E, McPhaden M (2001) A model study of the oceanic mechanisms affecting the equatorial SST during the 1997–98 El Niño. J Phys Oceanogr 31:1649–1675Google Scholar
  90. Wen C, Kumar A, Xue Y, McPhaden MJ (2014) Changes in tropical Pacific thermocline depth and their relationship to ENSO after 1999. J Clim 27(19):7230–7249.  https://doi.org/10.1175/JCLI-D-13-00518.1 Google Scholar
  91. Wyrtki K (1985) Water displacements in the Pacific and the genesis of El Niño cycles. J Geophys Res 90:7129–7132Google Scholar
  92. Yu Y, Dommenget D, Frauen C, Wang G, Wales S (2016) ENSO dynamics and diversity resulting from the recharge oscillator interacting with the slab ocean. Clim Dyn 46(5–6):1665–1682.  https://doi.org/10.1007/s00382-015-2667-1 Google Scholar
  93. Zelle H, Appeldoorn G, Burgers G, van Oldenborgh GJ (2004) The relationship between sea surface temperature and thermocline depth in the eastern equatorial Pacific. J Phys Oceanogr 34(3):643–655.  https://doi.org/10.1175/2523.1 Google Scholar
  94. Zhang X, Clarke AJ (2017) On the dynamical relationship between equatorial Pacific surface currents, zonally-averaged equatorial sea level and El Niño prediction. J Phys Oceanogr 47(2):323–337Google Scholar
  95. Zhang Q, Kumar A, Xue Y, Wang W, Jin FF (2007) Analysis of the ENSO cycle in the NCEP coupled forecast model. J Clim 20(7):1265–1284.  https://doi.org/10.1175/JCLI4062.1 Google Scholar
  96. Zhu X, Greatbatch RJ, Claus M (2017) Interannual variability of tropical Pacific sea level from 1993 to 2014. J Geophys Res Oceans 122:602–616.  https://doi.org/10.1002/2016JC012347 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LOCEAN-IPSL, Sorbonne Université (UPMC, Université Paris 06)-CNRS-IRD-MNHNParisFrance
  2. 2.Indo-French Cell for Water Sciences, IISc-NIO-IITM-IRD Joint International Laboratory, CSIR-NIOGoaIndia
  3. 3.CSIR-National Institute of OceanographyGoaIndia

Personalised recommendations