Advertisement

Climate Dynamics

, Volume 52, Issue 5–6, pp 2613–2630 | Cite as

Mid-latitude source of the ENSO-spread in SINTEX-F ensemble predictions

  • Tomomichi OgataEmail author
  • Takeshi Doi
  • Yushi Morioka
  • Swadhin Behera
Article
  • 88 Downloads

Abstract

The ensemble spread of seasonal prediction is investigated in this study to understand its role in the predictability of El Niño/Southern Oscillation (ENSO) based on the results of SINTEX-F2, a coupled ocean–atmosphere general circulation model. In the SINTEX-F2 seasonal prediction system, the first ENSO precursor appears as a cyclonic wind anomaly over the central north Pacific in boreal winter (January). This is followed by warm SST, positive rainfall and cross-equatorial southerly wind anomalies in the northern hemisphere during spring (particularly in April). These anomalies in April are accompanied by westerly wind anomaly in the western equatorial Pacific. Finally, El Niño-like conditions with warm SST and positive rainfall anomalies become dominant in the ensemble standard deviation after boreal summer. The 500 hPa geopotential height suggests that stochastic atmospheric variability excites El Niño-like spread through air-sea interaction. The oceanic response in the form of upper heat content (in the top 150 m) appears to result from the equatorial wind forcing during boreal spring and summer. These model results suggest that air-sea interaction related to the seasonal footprinting mechanism (SFM) is important for ENSO spread and the “spring predictability barrier”. The dependence of ENSO spread on the background ensemble-mean state is also investigated.

Keywords

ENSO Seasonal prediction Ensemble spread 

Notes

Acknowledgements

The authors would like to appreciate careful reading and constructive comments by Drs. Masami Nonaka, Bunmei Taguchi and Ingo Richter. Numerical experiments of SINTEX-F2 were executed on the Earth Simulator of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). We are grateful to Drs. Wataru Sasaki, Jing-Jia Luo, Sebastian Masson, Andrea Storto, and our European colleagues of INGV/CMCC, L’OCEAN, and MPI for their contribution to developing the prototype of the systems. This research was supported by the Environment Research and Technology Development Fund (2–1405) of the Ministry of the Environment, Japan, the Japan Agency for Medical Research and Development (AMED) and Japan International Cooperation Agency (JICA) through the Science and Technology Research Partnership for Sustainable Development (SATREPS) project for iDEWS South Africa, and JSPS KAKENHI Grant Number 16H04047 and 16K17810.

References

  1. Alexander MA, Vimont DJ, Chang P, Scott JD (2010) The impact of extratropical atmospheric variability on ENSO: testing the seasonal footprinting mechanism using coupled model experiments. J Clim 23(11):2885–2901CrossRefGoogle Scholar
  2. Anderson BT (2003) Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific. J Geophys Res Atmos.  https://doi.org/10.1029/2003JD003805 Google Scholar
  3. Anderson BT (2007) On the joint role of subtropical atmospheric variability and equatorial subsurface heat content anomalies in initiating the onset of ENSO events. J Clim 20(8):1593–1599CrossRefGoogle Scholar
  4. Anderson BT, Perez RC, Karspeck A (2013) Triggering of El Niño onset through trade wind–induced charging of the equatorial Pacific. Geophys Res Lett 40(6):1212–1216CrossRefGoogle Scholar
  5. Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18(4):820–829CrossRefGoogle Scholar
  6. Cane MA, Zebiak SE, Dolan SC (1986) Experimental forecasts of El Nifio. Nature 321:827–832CrossRefGoogle Scholar
  7. Capotondi A et al (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96(6):921–938CrossRefGoogle Scholar
  8. Chang P, Zhang L, Saravanan R, Vimont DJ, Chiang JCH, Ji L, Seidel H, Tippett MK (2007) Pacific meridional mode and El Niño—Southern oscillation. Geophys Res Lett 34(16):L16608.  https://doi.org/10.1029/2007GL030302 CrossRefGoogle Scholar
  9. Chiang JCH, Vimont DJ (2004) Analogous meridional modes of atmosphere–ocean variability in the tropical Pacific and tropical Atlantic. J Clim 17(21):4143–4158CrossRefGoogle Scholar
  10. Di Lorenzo E, Schneider N, Cobb KM, Franks PJS, Chhak K, Miller AJ, Powell TM (2008) North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys Res Lett 35(8):L08607.  https://doi.org/10.1029/2007GL032838 CrossRefGoogle Scholar
  11. Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson BT, Bracco A, Vimont DJ (2010) Central pacific El Niño and decadal climate change in the North Pacific ocean. Nat Geosci 3(11):762CrossRefGoogle Scholar
  12. Di Lorenzo E, Liguori G, Schneider N, Furtado JC, Anderson BT, Alexander MA (2015) ENSO and meridional modes: a null hypothesis for Pacific climate variability. Geophys Res Lett 42(21):9440–9448CrossRefGoogle Scholar
  13. Ding R, Li J, Tseng YH (2015) The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Clim Dyn 44(7–8):2017–2034CrossRefGoogle Scholar
  14. Doi T, Yuan C, Behera SK, Yamagata T (2015) Predictability of the California Niño/Niña. J Clim 28(18):7237–7249CrossRefGoogle Scholar
  15. Doi T, Behera SK, Yamagata T (2016) Improved seasonal prediction using the SINTEX-F2 coupled model. J Adv Mod Earth Sys 8(4):1847–1867CrossRefGoogle Scholar
  16. Doi T, Storto A, Behera SK, Navarra A, Yamagata T (2017) Improved prediction of the Indian Ocean Dipole Mode by use of subsurface ocean observations. J Clim 19:7953–7970CrossRefGoogle Scholar
  17. Duan W, Wei C (2013) The ‘spring predictability barrier’ for ENSO predictions and its possible mechanism: results from a fully coupled model. Int J Climatol 33:1280–1292.  https://doi.org/10.1002/joc.3513 CrossRefGoogle Scholar
  18. Fedorov AV, Hu S, Lengaigne M, Guilyardi E (2015) The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim Dyn 44(5–6):1381–1401CrossRefGoogle Scholar
  19. Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102(12):609–646.  https://doi.org/10.1029/97JC00480 Google Scholar
  20. Gill A (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106(449):447–462CrossRefGoogle Scholar
  21. Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res Oceans 118:6704–6716.  https://doi.org/10.1002/2013JC009067 CrossRefGoogle Scholar
  22. Ham YG, Kug JS (2014) Effects of Pacific Intertropical Convergence Zone precipitation bias on ENSO phase transition. Env Res Lett 9(6):064008CrossRefGoogle Scholar
  23. Harrison DE, Vecchi GA (1999) On the termination of El Niño. Geophys Res Lett 26(11):1593–1596CrossRefGoogle Scholar
  24. Hirst AC (1986) Unstable and damped equatorial modes in simple coupled ocean-atmosphere models. J Atmos Sci 43(6):606–632CrossRefGoogle Scholar
  25. Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Weather Rev 109(4):813–829CrossRefGoogle Scholar
  26. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38(6):1179–1196CrossRefGoogle Scholar
  27. Jin EK et al (2008) Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim Dyn 31:647–664CrossRefGoogle Scholar
  28. Joseph S, Sahai AK, Goswami BN, Terray P, Masson S, Luo JJ (2012) Possible role of warm SST bias in the simulation of boreal summer monsoon in SINTEX-F2 coupled model. Clim Dyn 38(7–8):1561–1576CrossRefGoogle Scholar
  29. Kataoka T, Tozuka T, Behera S, Yamagata T (2014) On the Ningaloo Niño/Niña. Clim Dyn 43(5–6):1463–1482CrossRefGoogle Scholar
  30. Kirtman BP et al (2014) The North American multimodel ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull Am Meteorol Soc 95(4):585–601CrossRefGoogle Scholar
  31. Kug J-S, Ham Y-G, Lee EJ, Kang IS (2011) Empirical singular vector method for ensemble El Niño-Southern Oscillation prediction with a coupled general circulation model. J Geophys Res 116(C8):C08029CrossRefGoogle Scholar
  32. Larson SM, Kirtman BP (2013) The Pacific Meridional Mode as a trigger for ENSO in a high-resolution coupled model. Geophys Res Lett 40(12):3189–3194CrossRefGoogle Scholar
  33. Larson SM, Kirtman BP (2017) Linking preconditioning to extreme ENSO events and reduced ensemble spread. Clim Dyn.  https://doi.org/10.1007/s00382-017-3791-x Google Scholar
  34. Lopez H, Kirtman BP (2013) Westerly wind bursts and the diversity of ENSO in CCSM3 and CCSM4. Geophys Res Lett 40(17):4722–4727CrossRefGoogle Scholar
  35. Luo JJ, Masson S, Behera SK, Yamagata T (2008) Extended ENSO predictions using a fully coupled ocean–atmosphere model. J Clim 21(1):84–93CrossRefGoogle Scholar
  36. Ma J, Xie SP, Xu H (2017) Contributions of the North Pacific Meridional Mode to Ensemble Spread of ENSO prediction. J Clim.  https://doi.org/10.1175/JCLI-D-17-0182.1 Google Scholar
  37. Madec G (2008) NEMO ocean engine, version 3.0. Note du Pôle de modélisation de l’Institut Pierre-Simon Laplace, vol 27. Institut Pierre-Simon Laplace, France, 209 (ISSN 1288–1619)Google Scholar
  38. Masson S, Terray P, Madec G, Luo JJ, Yamagata T, Takahashi K (2012) Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Clim Dyn 39:681–707CrossRefGoogle Scholar
  39. Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Met Soc Jpn 44(1):25–43CrossRefGoogle Scholar
  40. McPhaden MJ (1999) Genesis and evolution of the 1997-98 El Niño. Science 283(5404):950–954CrossRefGoogle Scholar
  41. McPhaden MJ (2003) Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys Res Lett 30:1480.  https://doi.org/10.1029/2003GL016872 9.CrossRefGoogle Scholar
  42. Philander SGH, Yamagata T, Pacanowski RC (1984) Unstable air-sea interactions in the tropics. J Atmos Sci 41(4):604–613CrossRefGoogle Scholar
  43. Prodhomme C, Terray P, Masson S, Izumo T, Tozuka T, Yamagata T (2014) Impacts of Indian Ocean SST biases on the Indian Monsoon: as simulated in a global coupled model. Clim Dyn 42(1–2):271–290CrossRefGoogle Scholar
  44. Rasmusson EM, Carpenter TH (1983) The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon Weather Rev 111(3):517–528CrossRefGoogle Scholar
  45. Roeckner E et al (2003) The atmospheric general circulation model ECHAM5. Part I: Model description. MPI-Rep. 349. Max-Planck-Institut für Meteorologie, Hamburg, pp 140. https://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf. Accessed 30 May 2018
  46. Sasaki W, Richards KJ, Luo JJ (2013) Impact of vertical mixing induced by small vertical scale structures above and within the equatorial thermocline on the tropical Pacific in a CGCM. Clim Dyn 41:443–453CrossRefGoogle Scholar
  47. Seiki A, Takayabu YN (2007) Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: statistics. Mon Weather Rev 135(10):3325–3345CrossRefGoogle Scholar
  48. Tziperman E, Yu L (2007) Quantifying the dependence of westerly wind bursts on the large-scale tropical Pacific SST. J Clim 20(12):2760–2768CrossRefGoogle Scholar
  49. Vecchi GA, Harrison DE (2003) On the termination of the 2002–03 El Niño event. Geophys Res Lett 30(18)Google Scholar
  50. Vikhliaev Y, Kirtman B, Schopf P (2007) Decadal North Pacific bred vectors in a coupled GCM. J Clim 20(23):5744–5764CrossRefGoogle Scholar
  51. Vimont DJ (2010) Transient growth of thermodynamically coupled disturbances in the tropics under an equatorially symmetric mean state. J Clim 23(21):5771–5789.  https://doi.org/10.1175/2010JCLI3532.1 CrossRefGoogle Scholar
  52. Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28(20):3923–3926CrossRefGoogle Scholar
  53. Vimont DJ, Wallace JM, Battisti DS (2003a) The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J Clim 16(16):2668–2675CrossRefGoogle Scholar
  54. Vimont DJ, Battisti DS, Hirst AC (2003b) The seasonal footprinting mechanism in the CSIRO general circulation models. J Clim 16(16):2653–2667CrossRefGoogle Scholar
  55. Wang SY, L’Heureux M, Chia HH (2012) ENSO prediction one year in advance using western North Pacific sea surface temperatures. Geophys Res Lett 39(5):L05702.  https://doi.org/10.1029/2012GL050909 Google Scholar
  56. Webster PJ, Hoyos CD (2010) Beyond the spring barrier? Nature Geosci 3:152–153CrossRefGoogle Scholar
  57. Yuan C, Yamagata T (2014) California Niño/Niña. Sci Rep 4:4801CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Japan Agency for Marine-Earth Science and TechnologyYokohamaJapan

Personalised recommendations