Climate Dynamics

, Volume 52, Issue 3–4, pp 2303–2318 | Cite as

An asymmetric rainfall response to ENSO in East Asia

  • Ching Ho Justin NgEmail author
  • Gabriel A. Vecchi
  • Ángel G. Muñoz
  • Hiroyuki Murakami


This study explores the impact of El Niño and La Niña events on precipitation and circulation in East Asia. The results are based on statistical analysis of various observational datasets and Geophysical Fluid Dynamics Laboratory’s (GFDL’s) global climate model experiments. Multiple observational datasets and certain models show that in the southeastern coast of China, precipitation exhibits a nonlinear response to Central Pacific sea surface temperature anomalies during boreal deep fall/early winter. Higher mean rainfall is observed during both El Niño and La Niña events compared to the ENSO-Neutral phase, by an amount of approximately 0.4–0.5 mm/day on average per oC change. We argue that, in October to December, while the precipitation increases during El Niño are the result of anomalous onshore moisture fluxes, those during La Niña are driven by the persistence of terrestrial moisture anomalies resulting from earlier excess rainfall in this region. This is consistent with the nonlinear extreme rainfall behavior in coastal southeastern China, which increases during both ENSO phases and becomes more severe during El Niño than La Niña events.



The authors would like to thank Fanrong Zeng for conducting the CM2.1 simulations relevant for this study, and to Thomas Delworth and Will Cooke for the development of the LOAR model. This work is supported in part by National Oceanic and Atmospheric Administration (NOAA) Grants NA14OAR4830101 and NA14OAR4320106.


  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4(6):1147–1167.,1147:TVGPCP.2.0.CO;2 CrossRefGoogle Scholar
  2. Alexander MA, Bladé I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15(16):2205–2231CrossRefGoogle Scholar
  3. An SI, Jin FF (2004) Nonlinearity and asymmetry of ENSO. J Clim 17(12):2399–2412.<2399:NAAOE>2.0.CO;2.CrossRefGoogle Scholar
  4. Baldwin J, Vecchi G (2016) Influence of the Tian Shan on arid extratropical Asia. J Clim 29(16):5741–5762. CrossRefGoogle Scholar
  5. Barlow M, Nigam S, Berbery EH (2001) ENSO, Pacific decadal variability, and US summertime precipitation, drought, and stream flow. J Clim 14(9):2105–2128CrossRefGoogle Scholar
  6. Cai W, Santoso A, Wang G, Yeh SW, An SI, Cobb KM, Collins M, Guilyardi E, Jin FF, Kug JS, Lengaigne M (2015) ENSO and greenhouse warming. Nat Clim Change 5:849–859. CrossRefGoogle Scholar
  7. Chen M, Xie P, Janowiak JE, Arkin PA (2002) Global land precipitation: a 50-yr monthly analysis based on gauge observations. J Hydrometeorol 3(3):249–266CrossRefGoogle Scholar
  8. Choi KY, Vecchi GA, Wittenberg AT (2013) ENSO transition, duration, and amplitude asymmetries: role of the nonlinear wind stress coupling in a conceptual model. J Clim 26(23):9462–9476. CrossRefGoogle Scholar
  9. Choi KY, Vecchi GA, Wittenberg AT (2015) Nonlinear zonal wind response to ENSO in the CMIP5 models: roles of the zonal and meridional shift of the ITCZ/SPCZ and the simulated climatological precipitation. J Clim 28(21):8556–8573. CrossRefGoogle Scholar
  10. Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon KW, Dunne J, Dunne KA, Durachta JW (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19(5):643–674. CrossRefGoogle Scholar
  11. Delworth TL, Rosati A, Anderson W, Adcroft AJ, Balaji V, Benson R, Dixon K, Griffies SM, Lee HC, Pacanowski RC, Vecchi GA (2012) Simulated climate and climate change in the GFDL CM2. 5 high-resolution coupled climate model. J Clim 25(8):2755–2781. CrossRefGoogle Scholar
  12. Dommenget D, Bayr T, Frauen C (2013) Analysis of the non-linearity in the pattern and time evolution of El Niño Southern Oscillation. Clim Dyn 40(11–12):2825–2847. CrossRefGoogle Scholar
  13. Efron B, Tibshirani R (1985) The bootstrap method for assessing statistical accuracy. Behaviormetrika 12(17):1–35. CrossRefGoogle Scholar
  14. Guo Z, Zhou T, Wu B (2017) The asymmetric effects of El Niño and La Niña on the East Asian winter monsoon and their simulation by CMIP5 atmospheric models. J Meteorol Res 31(1):82–93. CrossRefGoogle Scholar
  15. Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10(8):1769–1786.<1769:ENOLNA>2.0.CO;2 CrossRefGoogle Scholar
  16. Hong CC, Li T, Chen YC (2010) Asymmetry of the Indian Ocean basinwide SST anomalies: roles of ENSO and IOD. J Clim 23(13):3563–3576. CrossRefGoogle Scholar
  17. Jia L, Yang X, Vecchi GA, Gudgel RG, Delworth TL, Rosati A, Stern WF, Wittenberg AT, Krishnamurthy L, Zhang S, Msadek R (2015) Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J Clim 28(5):2044–2062. CrossRefGoogle Scholar
  18. Jin FF, An SI, Timmermann A, Zhao J (2003) Strong El Niño events and nonlinear dynamical heating. Geophys Res Lett. Google Scholar
  19. Kane RP (1997) Relationship of El Niño–Southern Oscillation and Pacific sea surface temperature with rainfall in various regions of the globe. Mon Weather Rev 125(8):1792–1800CrossRefGoogle Scholar
  20. Lanzante JR (1996) Resistant, robust and non-parametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde station data. Int J Climatol 16(11):1197–1226CrossRefGoogle Scholar
  21. Larkin NK, Harrison DE (2002) ENSO warm (El Niño) and cold (La Niña) event life cycles: ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J Clim 15(10):1118–1140.,1118:EWENOA.2.0.CO;2 CrossRefGoogle Scholar
  22. Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett. Google Scholar
  23. Lau NC, Nath MJ (2001) Impact of ENSO on SST variability in the North Pacific and North Atlantic: seasonal dependence and role of extratropical sea–air coupling. J Clim 14(13):2846–2866CrossRefGoogle Scholar
  24. Lengaigne M, Vecchi GA (2010) Contrasting the termination of moderate and extreme El Niño events in coupled general circulation models. Clim Dyn 35(2–3):299–313. CrossRefGoogle Scholar
  25. Li J, Fan K, Xu Z (2016) Asymmetric response in Northeast Asia of summer NDVI to the preceding ENSO cycle. Clim Dyn 47(9–10):2765–2783. CrossRefGoogle Scholar
  26. Muñoz ÁG, Yang X, Vecchi GA, Robertson AW, Cooke WF (2017) A weather-type-based cross-time-scale diagnostic framework for coupled circulation models. J Clim 30(22):8951–8972CrossRefGoogle Scholar
  27. Murakami H, Vecchi GA, Underwood S, Delworth TL, Wittenberg AT, Anderson WG, Chen JH, Gudgel RG, Harris LM, Lin SJ, Zeng F (2015) Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J Clim 28(23):9058–9079. CrossRefGoogle Scholar
  28. Ohba M, Ueda H (2009) Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J Clim 22(1):177–192. CrossRefGoogle Scholar
  29. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110(5):354–384.<0354:VITSST>2.0.CO;2CrossRefGoogle Scholar
  30. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108(D14):4407. CrossRefGoogle Scholar
  31. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115(8):1606–1626CrossRefGoogle Scholar
  32. Seager R, Vecchi GA (2010) Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc Natl Acad Sci 107(50):21277–21282. CrossRefGoogle Scholar
  33. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296. CrossRefGoogle Scholar
  34. Tong J, Qiang Z, Deming Z, Yijin W (2006) Yangtze floods and droughts (China) and teleconnections with ENSO activities (1470–2003). Quat Int 144(1):29–37CrossRefGoogle Scholar
  35. van der Wiel K, Kapnick SB, Vecchi GA, Cooke WF, Delworth TL, Jia L, Murakami H, Underwood S, Zeng F (2016) The resolution dependence of contiguous US precipitation extremes in response to CO2 forcing. J Clim 29(22):7991–8012. CrossRefGoogle Scholar
  36. Vecchi GA (2006) The termination of the 1997–98 El Niño. Part II: mechanisms of atmospheric change. J Clim 19(12):2647–2664CrossRefGoogle Scholar
  37. Vecchi GA, Harrison DE (2006) The termination of the 1997–98 El Niño. Part I: mechanisms of oceanic change. J Clim 19(12):2633–2646CrossRefGoogle Scholar
  38. Vecchi GA, Delworth T, Gudgel R, Kapnick S, Rosati A, Wittenberg AT, Zeng F, Anderson W, Balaji V, Dixon K, Jia L (2014) On the seasonal forecasting of regional tropical cyclone activity. J Clim 27(21):7994–8016. CrossRefGoogle Scholar
  39. Wang B, Wu R, Fu X (2000) Pacific–East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13(9):1517–1536CrossRefGoogle Scholar
  40. Willmott CJ, Matsuura K (2001) Terrestrial air temperature and precipitation: monthly and annual time series (1950–1999). Center for Climate Research, Version 1.
  41. Wu R, Hu ZZ, Kirtman BP (2003) Evolution of ENSO-related rainfall anomalies in East Asia. J Clim 16(22):3742–3758CrossRefGoogle Scholar
  42. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteor Soc 78(11):2539–2558CrossRefGoogle Scholar
  43. Yatagai A, Arakawa O, Kamiguchi K, Kawamoto H, Nodzu MI, Hamada A (2009) A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. SOLA 5:137–140. CrossRefGoogle Scholar
  44. Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteor Soc 93(9):1401–1415. CrossRefGoogle Scholar
  45. Zebiak SE, Orlove B, Muñoz ÁG, Vaughan C, Hansen J, Troy T, Thomson MC, Lustig A, Garvin S (2015) Investigating El Niño-Southern Oscillation and society relationships. Wiley Interdiscip Rev Clim Change 6(1):17–34. CrossRefGoogle Scholar
  46. Zhang R, Sumi A (2002) Moisture circulation over East Asia during El Niño episode in northern winter, spring and autumn. J Meteorol Soc Japan Ser II 80(2):213–227CrossRefGoogle Scholar
  47. Zhang R, Sumi A, Kimoto M (1999) A diagnostic study of the impact of El Niño on the precipitation in China. Adv Atmos Sci 16(2):229–241CrossRefGoogle Scholar
  48. Zhang T, Perlwitz J, Hoerling MP (2014) What is responsible for the strong observed asymmetry in teleconnections between El Niño and La Niña? Geophys Res Lett 41(3):1019–1025. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Atmospheric and Oceanic Sciences (AOS)Princeton UniversityPrincetonUSA
  2. 2.Department of GeosciencesPrinceton UniversityPrincetonUSA
  3. 3.Princeton Environmental InstitutePrinceton UniversityPrincetonUSA
  4. 4.International Research Institute for Climate and Society (IRI), The Earth InstituteColumbia UniversityPalisadesUSA
  5. 5.NOAA/Geophysical Fluid Dynamics LaboratoryPrinceton UniversityPrincetonUSA

Personalised recommendations