Advertisement

Decadal modulation of the relationship between intraseasonal tropical variability and ENSO

  • Daria Gushchina
  • Boris Dewitte
Article

Abstract

The El Niño Southern Oscillation (ENSO) amplitude is modulated at decadal timescales, which, over the last decades, has been related to the low-frequency changes in the frequency of occurrence of the two types of El Niño events, that is the Eastern Pacific (EP) and Central Pacific (CP) El Niños. Meanwhile ENSO is tightly linked to the intraseasonal tropical variability (ITV) that is generally enhanced prior to El Niño development and can act as a trigger of the event. Here we revisit the ITV/ENSO relationship taking into account changes in ENSO properties over the last six decades. The focus is on two main components of ITV, the Madden–Julian Oscillation (MJO) and convectively coupled equatorial Rossby waves (ER). We show that the ITV/ENSO relationship exhibits a decadal modulation that is not related in a straight-forward manner to the change in occurrence of El Niño types and Pacific decadal modes. While enhanced MJO activity associated to EP El Niño development mostly took place over the period 1985–2000, the ER activity is enhanced prior to El Niño development over the whole period with a tendency to relate more to CP El Niño than to EP El Niño. In particular the relationship between ER activity and ENSO was particularly strong for the period 2000–2015, which results in a significant positive long-term trend of the predictive value of ER activity. The statistics of the MJO and ER activity is consistent with the hypothesis that they can be considered a state-dependent noise for ENSO linked to distinct lower frequency climate modes.

Keywords

Intraseasonal tropical variability El Niño Decadal modulation 

Notes

Acknowledgements

B. Dewitte and D. Gushchina acknowledge supports from FONDECYT (projects 1151185 and 1171861). LEFE-GMMC (Mercator Ocean, France) is thanked for financial supports through the STEPPE project. D. Gushchina acknowledges supports from Russian Foundation of Basic Research (project No. 18-05-00767). The study is carried out in frame of scientific program of the Faculty of Geography of Moscow State University no. АААА-А16-116032810086-4.

References

  1. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007.  https://doi.org/10.1029/2006JC003798 CrossRefGoogle Scholar
  2. Barnston A, Tippett MK, L’Heureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002–2011: is our capability increasing? Bull Am Meteorol Soc 93:631–651.  https://doi.org/10.1175/BAMS-D-11-00111.1 CrossRefGoogle Scholar
  3. Boulanger J-P, Menkes C, Lengaigne M (2004) Role of high- and low-frequency winds and wave reflection in the onset, growth and termination of the 1997/1998 El Niño. Clim Dyn 22(2–3):267–280CrossRefGoogle Scholar
  4. Capotondi A et al (2015) Understanding ENSO diversity. Bull Am Meteorol Soc.  https://doi.org/10.1175/BAMS-D-13-00117.1 Google Scholar
  5. Cassou C (2008) Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature.  https://doi.org/10.1038/nature07286 Google Scholar
  6. Chen D, Lian T, Fu C, Cane M, Tang Y, Murtugudde R, Song X, Wu Q, Zhou L (2015) Strong influence of westerly wind bursts on El Niño diversity. Nat Geosci.  https://doi.org/10.1038/NGEO2399 Google Scholar
  7. Chiang JCH, Vimont DJ (2004a) Analagous meridional modes of atmosphere-ocean variability in the tropical Pacific and tropical Atlantic. J Clim 17:4143–4158CrossRefGoogle Scholar
  8. Chiang JCH, Vimont DJ (2004b) Analogous Pacific and Atlantic meridional modes of tropical atmosphere–Ocean Variability. J Clim 17:4143–4158CrossRefGoogle Scholar
  9. Choi J, An SI, Kug JS, Yeh SW (2011) The role of mean state on changes in El Niño’s flavor. Clim Dyn 37:1205–1215.  https://doi.org/10.1007/s00382-010-0912-1 CrossRefGoogle Scholar
  10. Choi J, An SI, Yeh SW (2012) Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Clim Dyn 38:2631–2644.  https://doi.org/10.1007/s00382-011-1186-y CrossRefGoogle Scholar
  11. Clarke AJ, Van Gorder S (2003) Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys Res Lett.  https://doi.org/10.1029/2002GL016673 Google Scholar
  12. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  13. Dewitte B, Reverdin G, Maes C (1999) Vertical structure of an OGCM simulation of the equatorial Pacific Ocean in 1985–1994. J Phys Oceanogr 29:1542–1570CrossRefGoogle Scholar
  14. Fedorov A (2002) The response of the coupled tropical ocean–atmosphere to westerly wind bursts. Quart J R Meteorol Soc 128(579):1–23CrossRefGoogle Scholar
  15. Fedorov AV, Hu S, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts and ocean initial state on the development and diversity of El Niño events. Clim Dyn 44:1381–1401CrossRefGoogle Scholar
  16. Frauen C, Dommenget D, Rezny M, Wales S (2014) Analysis of the non-linearity of El Niño Southern Oscillation teleconnections. J Clim 27:6225–6244CrossRefGoogle Scholar
  17. Gershunov A, Barnett TP (1998) Interdecadal modulation of ENSO teleconnections. Bull Am Meteorol Soc 79:2715–2725CrossRefGoogle Scholar
  18. Gushchina DY, Dewitte B (2005) Interannual climate variability and teleconnections in a quasi-equilibrium tropical circulation model. Izv Akad Nauk Fiz Atmos Okeana 41:393–417Google Scholar
  19. Gushchina D, Dewitte B (2011) The relationship between intraseasonal tropical variability and ENSO and its modulation at seasonal to decadal timescales. Cent Eur J Geosci 1(2):175–196.  https://doi.org/10.2478/s13533-011-0017-3 Google Scholar
  20. Gushchina D, Dewitte B (2012) Intraseasonal tropical atmospheric variability associated with the two flavors of El Niño. Mon Weather Rev 140:3669–3681.  https://doi.org/10.1175/MWR-D-11-00267.1 CrossRefGoogle Scholar
  21. Harrison DE (1984) The appearance of sustained equatorial surface westerlies during the 1982 pacific warm event. Science 224(4653):1099–1102CrossRefGoogle Scholar
  22. Harrison DE, Vecchi GA (1997) Westerly wind events in the tropical Pacific. J Clim 10:3131–3156CrossRefGoogle Scholar
  23. Hendon HH, Wheeler M, Zhang CC (2007) Seasonal dependence of the MJO–ENSO relationship. J Clim 20:531–543CrossRefGoogle Scholar
  24. Horii T, Ueki I, Hanawa K (2012) Breakdown of ENSO predictors in the 2000s: decadal changes of recharge/discharge-SST phase relation and atmospheric intraseasonal forcing. Geophys Res Lett 39:L10707.  https://doi.org/10.1029/2012GL051740 CrossRefGoogle Scholar
  25. Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  26. Jin FF, Lin L, Timmermann A, Zhao J (2007) Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys Res Let 34:L03807.  https://doi.org/10.1029/2006GL027372 Google Scholar
  27. Jones C, Carvalho LMV (2006) Changes in the activity of the Madden–Julian Oscillation during 1958–2004. J Clim 19:6353–6370CrossRefGoogle Scholar
  28. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  29. Kirtman BP, Min D, Infanti JM, Kinter JL, Paolino DA, Zhang Q, Van Den Dool H, Saha S, Mendez MP, Becker E, Peng P, Tripp P, Huang J, Dewitt DG, Tippett MK et al (2014) The North American multimodel ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull Am Meteorol Soc 95:585–601.  https://doi.org/10.1175/BAMS-D-12-00050.1 CrossRefGoogle Scholar
  30. Kug JS, Jin FF, Sooraj KP, Kang IS (2008) State-dependent atmospheric noise associated with ENSO. Geophys Res Lett.  https://doi.org/10.1029/2007GL032017 Google Scholar
  31. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515CrossRefGoogle Scholar
  32. Larson SM, Kirtman B (2013) The Pacific Meridional Mode as a trigger for ENSO in a high-resolution coupled model. Geophys Res Lett 40:3189–3194CrossRefGoogle Scholar
  33. Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett.  https://doi.org/10.1029/2010GL044007 Google Scholar
  34. Lengaigne M et al (2003) The March 1997 Westerly wind event and the onset of the 1997/98 El Niño: understanding the role of the atmospheric response. J Clim 16(20):3330–3343CrossRefGoogle Scholar
  35. Lengaigne M, Boulanger JP, Delecluse P, Menkes C, Guilyardi E, Slingo JM (2004) Westerly wind events in the Tropical Pacific and their influence on the coupled ocean–atmosphere system: a review. In: Wang C, Xie SP, Carton JA (eds) Earth’s climate. American Geophysical Union, Washington, DC.  https://doi.org/10.1029/147GM03 Google Scholar
  36. Levine AFZ, Jin FF (2010) Noise-induced instability in the ENSO recharge oscillator. J Atmos Sci 67:529–542CrossRefGoogle Scholar
  37. Levine AFZ, Jin FF (2015). A simple approach to quantifying the noise ENSO interaction. Part I: deducing the state dependency of the windstress forcing using monthly mean data. Clim Dyn.  https://doi.org/10.1007/s00382-015-2748-1 Google Scholar
  38. Lian T, Chen D, Tang Y, Wu Q (2014) Effects of westerly wind bursts on El Niño: a new perspective. Geophys Res Lett.  https://doi.org/10.1002/2014GL059989 Google Scholar
  39. Liebmann B, Hendon HH, Glick JD (1994) The relationship between the tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J Meteorol Soc Jpn 72:401–411CrossRefGoogle Scholar
  40. Luther DS, Harrison DE, Knox RA (1983) Zonal winds in the central equatorial Pacific and El Niño. Science 222:327–330CrossRefGoogle Scholar
  41. Madden RE, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708CrossRefGoogle Scholar
  42. Madden RE, Julian PR (1994) Observations of the 40–50 day tropical oscillation—a review. Mon Weather Rev 122:814–837CrossRefGoogle Scholar
  43. Maloney ED, Hartmann DL (2001) The Madden–Julian Oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: observations. J Atmos Sci 58:2545–2558CrossRefGoogle Scholar
  44. McPhaden MJ (2012) A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys Res Lett 39:L09706.  https://doi.org/10.1029/2012GL051826 CrossRefGoogle Scholar
  45. McPhaden M, Zhang X, Hendon HH, Wheeler MC (2006) Large scale dynamics and MJO forcing of ENSO variability. Geophys Res Lett 33:L16702.  https://doi.org/10.1029/2006GL026786 CrossRefGoogle Scholar
  46. Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial pacific and their relationship to El Niño and La Niña J Clim.  https://doi.org/10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2 Google Scholar
  47. Park J-Y, Sang-Wook Yeh S-W, Kug J-S, Yoon J (2013) Favorable connections between seasonal footprinting mechanism and El Niño. Clim Dyn 40:1169–1181.  https://doi.org/10.1007/s00382-012-1477-y CrossRefGoogle Scholar
  48. Philander SGH (1978) Forced oceanic waves. Rev Geophys 16:15–46CrossRefGoogle Scholar
  49. Power S, Casey T, Folland C, Colman A, Mehta V (1999) Interdecadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324CrossRefGoogle Scholar
  50. Puy M, Vialard J, Lengaigne M, Guilyardi E (2016) Modulation of equatorial Pacific Westerly/Easterly Wind Events by the Madden–Julian Oscillation and convectively-coupled Rossby waves. Clim Dyn 46:2155–2178.  https://doi.org/10.1007/s00382-015-2695-x CrossRefGoogle Scholar
  51. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res.  https://doi.org/10.1029/2002JD002670 Google Scholar
  52. Schubert S, Dole R, Dool Hvd, Suarez M, Waliser D (2002) Prospects for improved forecasts of weather and short-term climate variability on subseasonal (2 week to 2 month) time scales. In: Proceedings of the workshop, Mitchellville, MD, NASA/TM 2002-104606, vol 23, p 71Google Scholar
  53. Takahashi K, Dewitte B (2016) Strong and moderate nonlinear El Niño regimes. Clim Dyn 6:1627–1645CrossRefGoogle Scholar
  54. Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett.  https://doi.org/10.1029/2011GL047364 Google Scholar
  55. Thual S, Dewitte B, An SI, Illig S, Ayoub N (2013) Influence of recent stratification changes on ENSO stability in a conceptual model of the equatorial pacific. J Clim.  https://doi.org/10.1175/JCLI-D-12-00363.1 Google Scholar
  56. Thual S, Majda AJ, Stechmann SN (2014) A stochastic skeleton model for the MJO. J Atmos Sci 71:697–715CrossRefGoogle Scholar
  57. Vecchi GA (2001) Sub-seasonal wind variability and El Nino. Ph. D. Dissertation, Univ. Of WashingtonGoogle Scholar
  58. Waliser DE (2005) Predictability and forecasting. In: Lau WKM, Waliser DE (eds) Intraseasonal variability in the atmosphere-ocean climate system. Springer/Praxis, Heidelberg. pp 389–423CrossRefGoogle Scholar
  59. Waliser DE, Lau KM, Stern W, Jones C (2003) Potential predictability of the Madden–Julian Oscillation. Bull Am Meteorol Soc 84:33–50CrossRefGoogle Scholar
  60. Wang W, Chen M, Kumar A (2010) An assessment of the CFS realtime seasonal forecasts. Weather Forecast 25:950–969.  https://doi.org/10.1175/2010WAF2222345.1 CrossRefGoogle Scholar
  61. Weng H, Behera SK, Yamagata T (2009) Anomalous winter climate conditions in the Pacific Rim during recent El Niño Modoki and El Niño events. Clim Dyn 32:663–674CrossRefGoogle Scholar
  62. Wheeler MC, Kiladis GN (1999) Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber–frequency domain. J Atmos Sci 56:374–399CrossRefGoogle Scholar
  63. Wheeler MC, McBride JL (2005) Australian–Indonesian monsoon. In: Lau WKM, Waliser DE (eds) Intraseasonal variability in the atmosphere–ocean climate system, Springer/Praxis, Berlin, pp 125–173CrossRefGoogle Scholar
  64. Wheeler M, Weickmann KM (2001) Real-time monitoring and prediction of modes of coherent synoptic to intraseasonal tropical variability. Mon Weather Rev 129:2677–2694CrossRefGoogle Scholar
  65. Xiang B, Wang B, Li T (2013) A new paradigm for the predominance of standing Central Pacific Warming after the late 1990s. Clim Dyn 41(2):327–340.  https://doi.org/10.1007/s00382-012-1427-8 CrossRefGoogle Scholar
  66. Yasunari T (1979) Cloudiness fluctuations associated with the northern hemisphere summer monsoon. J Meteorol Soc Jpn 57:227–242CrossRefGoogle Scholar
  67. Yeh S-W, Kug S-J, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461:511–514CrossRefGoogle Scholar
  68. Zhang C (2005) Madden–Julian Oscillation, Rev Geophys 43:RG2003  https://doi.org/10.1029/2004RG000158 Google Scholar
  69. Zhang H, Clement A, Di Nezio P (2014) The south pacific meridional mode: a mechanism for ENSO-like variability. J Clim.  https://doi.org/10.1175/JCLI-D-13-00082.1 Google Scholar
  70. Zhao M, Hendon HH, Alves O, Wang G (2016) Weakened Eastern Pacific El Niño predictability in the early 21st century. J Clim.  https://doi.org/10.1175/JCLI-D-15-0876.1 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of GeographyMoscow State UniversityMoscowRussia
  2. 2.Centro de Estudios Avanzado en Zonas Áridas (CEAZA)La SerenaChile
  3. 3.Departamento de Biología, Facultad de Ciencias del Mar, Universidad Católica del NorteCoquimboChile
  4. 4.Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI)CoquimboChile
  5. 5.Laboratoire d’Etudes en Géophysique et Océanographie SpatialesToulouseFrance

Personalised recommendations