Advertisement

Climate Dynamics

, Volume 52, Issue 3–4, pp 1837–1855 | Cite as

Contribution of tropical instability waves to ENSO irregularity

  • Ryan M. HolmesEmail author
  • Shayne McGregor
  • Agus Santoso
  • Matthew H. England
Article

Abstract

Tropical instability waves (TIWs) are a major source of internally-generated oceanic variability in the equatorial Pacific Ocean. These non-linear phenomena play an important role in the sea surface temperature (SST) budget in a region critical for low-frequency modes of variability such as the El Niño–Southern Oscillation (ENSO). However, the direct contribution of TIW-driven stochastic variability to ENSO has received little attention. Here, we investigate the influence of TIWs on ENSO using a \(1/4^\circ\) ocean model coupled to a simple atmosphere. The use of a simple atmosphere removes complex intrinsic atmospheric variability while allowing the dominant mode of air−sea coupling to be represented as a statistical relationship between SST and wind stress anomalies. Using this hybrid coupled model, we perform a suite of coupled ensemble forecast experiments initiated with wind bursts in the western Pacific, where individual ensemble members differ only due to internal oceanic variability. We find that TIWs can induce a spread in the forecast amplitude of the Niño 3 SST anomaly 6-months after a given sequence of WWBs of approximately \(\pm \,45\%\) the size of the ensemble mean anomaly. Further, when various estimates of stochastic atmospheric forcing are added, oceanic internal variability is found to contribute between about \(20\%\) and \(70\%\) of the ensemble forecast spread, with the remainder attributable to the atmospheric variability. While the oceanic contribution to ENSO stochastic forcing requires further quantification beyond the idealized approach used here, our results nevertheless suggest that TIWs may impact ENSO irregularity and predictability. This has implications for ENSO representation in low-resolution coupled models.

Keywords

Tropical instability waves El Niño–Southern Oscillation Ocean general circulation model Hybrid coupled model Stochastic forcing Predictability 

Notes

Acknowledgements

This study benefited from discussions with Vishal Dixit and comments from two anonymous reviewers. A.S. and M.H.E. are supported by the Earth Science and Climate Change Hub of the Australian Government’s National Environmental Science Programme (NESP) and the Centre for Southern Hemisphere Oceans Research (CSHOR), a joint research centre for Southern Hemisphere oceans between QNLM, CSIRO, UNSW and UTAS. S.M. was supported by the Australian Research Council. The altimeter products were produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS) (http://www.marine.copernicus.eu). We thank the TAO Project Office of NOAA/PMEL for providing the TAO data. This research was undertaken with the assistance of resources and services from the National Computational Infrastructure (NCI), which is supported by the Australian Government.

References

  1. Abellán E, McGregor S (2015) The role of the southward wind shift in both, the seasonal synchronization and duration of ENSO events. Clim Dyn 47(1-2): 509–527. https://doi.org/10.1007/s00382-015-2853-1
  2. An S (2008) Interannual variations of the tropical ocean instability wave and ENSO. J Clim 21(15):3680–3686.  https://doi.org/10.1175/2008JCLI1701.1 CrossRefGoogle Scholar
  3. An SI (2009) A review of interdecadal changes in the nonlinearity of the El Niño–Southern Oscillation. Theor Appl Climatol 97(1):29–40.  https://doi.org/10.1007/s00704-008-0071-z CrossRefGoogle Scholar
  4. Arbic BK, Müller M, Richman JG, Shriver JF, Morten AJ, Scott RB, Sérazin G, Penduff T (2014) Geostrophic turbulence in the frequency-wavenumber domain: Eddy-driven low-frequency variability. J Phys Oceanogr 44(8):2050–2069.  https://doi.org/10.1175/JPO-D-13-054.1 CrossRefGoogle Scholar
  5. Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139(674):1132–1161.  https://doi.org/10.1002/qj.2063 CrossRefGoogle Scholar
  6. Blanke B, Neelin JD, Gutzler D (1997) Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J Clim 10(7):1473–1486.  https://doi.org/10.1175/1520-0442(1997)010<1473:ETEOSW>2.0.CO;2
  7. Chelton DB, Esbensen SK, Schlax MG, Thum N, Freilich MH, Wentz FJ, Gentemann CL, McPhaden MJ, Schopf PS (2001) Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J Clim 14(7):1479–1498.  https://doi.org/10.1175/1520-0442(2001)014%3c1479:OOCBSW%3e2.0.CO;2
  8. Chiodi AM, Harrison DE, Vecchi GA (2014) Subseasonal atmospheric variability and El Niño waveguide warming: observed effects of the Madden-Julian oscillation and westerly wind events. J Clim 27(10):3619–3642.  https://doi.org/10.1175/JCLI-D-13-00547.1 CrossRefGoogle Scholar
  9. Contreras RF (2002) Long-term observations of tropical instability waves. J Phys Oceanogr 32(9):2715–2722CrossRefGoogle Scholar
  10. Cox MD (1980) Generation and propagation of 30-day waves in a numerical model of the Pacific. J Phys Oceanogr 10(8):1168–1186.  https://doi.org/10.1175/1520-0485(1980)010%3c1168:GAPODW%3e2.0.CO;2
  11. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597.  https://doi.org/10.1002/qj.828 CrossRefGoogle Scholar
  12. Deremble B, Wienders N, Dewar WK (2013) CheapAML: a simple, atmospheric boundary layer model for use in ocean-only model calculations. Mon Weather Rev 141(2):809–821.  https://doi.org/10.1175/MWR-D-11-00254.1 CrossRefGoogle Scholar
  13. Dommenget D (2010) The slab ocean El Niño. Geophys Res Lett 37(20):L20–701.  https://doi.org/10.1029/2010GL044888 CrossRefGoogle Scholar
  14. Dueing W, Hisard P, Katz E, Meincke J, Miller L, Moroshkin KV, Philander G, Ribnikov AA, Voigt K, Weisberg R (1975) Meanders and long waves in the equatorial atlantic. Nature 257:280–284.  https://doi.org/10.1038/257280a0 CrossRefGoogle Scholar
  15. Eisenman I, Yu L, Tziperman E (2005) Westerly wind bursts: ENSO’s tail rather than the dog? J Clim 18(24):5224–5238.  https://doi.org/10.1175/JCLI3588.1 CrossRefGoogle Scholar
  16. Fairall CW, Bradley EF, Rogers DP, Edson JB, Young GS (1996) Bulk parameterization of air–sea fluxes for tropical ocean–global atmosphere coupled-ocean atmosphere response experiment. J Geophys Res 101(C2):3747–3764.  https://doi.org/10.1029/95JC03205 CrossRefGoogle Scholar
  17. Fedorov AV, Hu S, Lengaigne M, Guilyardi E (2015) The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim Dyn 44(5):1381–1401.  https://doi.org/10.1007/s00382-014-2126-4 CrossRefGoogle Scholar
  18. Flament P, Kennan S, Knox R, Niiler P, Bernstein R (1996) The three-dimensional structure of an upper ocean vortex in the tropical Pacific ocean. Nature 383(6601):610–613.  https://doi.org/10.1038/383610a0 CrossRefGoogle Scholar
  19. Frauen C, Dommenget D (2010) El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks. Geophys Res Lett 37(18):L18–801.  https://doi.org/10.1029/2010GL044444 CrossRefGoogle Scholar
  20. Gebbie G, Eisenman I, Wittenberg A, Tziperman E (2007) Modulation of westerly wind bursts by sea surface temperature: a semistochastic feedback for ENSO. J Atmos Sci 64(9):3281–3295.  https://doi.org/10.1175/JAS4029.1 CrossRefGoogle Scholar
  21. Graham NE, Barnett TP (1987) Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science 238(4827):657–659.  https://doi.org/10.1126/science.238.4827.657 CrossRefGoogle Scholar
  22. Graham T (2014) The importance of eddy permitting model resolution for simulation of the heat budget of tropical instability waves. Ocean Model 79:21–32.  https://doi.org/10.1016/j.ocemod.2014.04.005 CrossRefGoogle Scholar
  23. Ham YG, Kang IS (2011) Improvement of seasonal forecasts with inclusion of tropical instability waves on initial conditions. Clim Dyn 36(7–8):1277–1290.  https://doi.org/10.1007/s00382-010-0743-0 CrossRefGoogle Scholar
  24. Hayashi M, Watanabe M (2017) ENSO complexity induced by state dependence of westerly wind events. J Clim 30(9):3401–3420.  https://doi.org/10.1175/JCLI-D-16-0406.1 CrossRefGoogle Scholar
  25. Holmes RM, Thomas LN (2016) Modulation of tropical instability wave intensity by equatorial Kelvin waves. J Phys Oceanogr 46:2623–2643.  https://doi.org/10.1175/JPO-D-16-0064.1 CrossRefGoogle Scholar
  26. Hu S, Fedorov AV, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts on the diversity and predictability of El Niño events: an ocean energetics perspective. Geophys Res Lett 41(13):4654–4663.  https://doi.org/10.1002/2014GL059573 CrossRefGoogle Scholar
  27. Imada Y, Kimoto M (2012) Parameterization of tropical instability waves and examination of their impact on ENSO characteristics. J Clim 25(13):4568–4581.  https://doi.org/10.1175/JCLI-D-11-00233.1 CrossRefGoogle Scholar
  28. Jochum M, Murtugudde R (2004) Internal variability of the tropical Pacific ocean. Geophys Res Lett.  https://doi.org/10.1029/2004GL020488
  29. Jochum M, Murtugudde R (2005) Internal variability of Indian ocean SST. J Clim 18(18):3726–3738.  https://doi.org/10.1175/JCLI3488.1 CrossRefGoogle Scholar
  30. Jochum M, Murtugudde R (2006) Temperature advection by tropical instability waves. J Phys Oceanogr 36(4):592–605.  https://doi.org/10.1175/JPO2870.1 CrossRefGoogle Scholar
  31. Jochum M, Cronin M, Kessler W, Shea D (2007a) Observed horizontal temperature advection by tropical instability waves. Geophys Res Lett.  https://doi.org/10.1029/2007GL029416
  32. Jochum M, Deser C, Phillips A (2007b) Tropical atmospheric variability forced by oceanic internal variability. J Clim 20(4):765–771.  https://doi.org/10.1175/JCLI4044.1 CrossRefGoogle Scholar
  33. Jochum M, Danabasoglu G, Holland M, Kwon YO, Large WG (2008) Ocean viscosity and climate. J Geophys Res 113(C6):C06017.  https://doi.org/10.1029/2007JC004515 CrossRefGoogle Scholar
  34. Johnson NC, Xie SP (2010) Changes in the sea surface temperature threshold for tropical convection. Nat Geosci 3(12):842–845.  https://doi.org/10.1038/ngeo1008 CrossRefGoogle Scholar
  35. Keen RA (1982) The role of cross-equatorial tropical cyclone pairs in the Southern Oscillation. Mon Weather Rev 110(10):1405–1416.  https://doi.org/10.1175/1520-0493(1982)110%3c1405:TROCET%3e2.0.CO;2
  36. Kirtman BP (1997) Oceanic rossby wave dynamics and the ENSO period in a coupled model. J Clim 10(7):1690–1704.  https://doi.org/10.1175/1520-0442(1997)010%3c1690:ORWDAT%3e2.0.CO;2
  37. Large W, Yeager S (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. National Center for Atmospheric ResearchGoogle Scholar
  38. Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32(4):363–403.  https://doi.org/10.1029/94RG01872 CrossRefGoogle Scholar
  39. Latif M, Sperber K, Arblaster J, Braconnot P, Chen D, Colman A, Cubasch U, Cooper C, Delecluse P, Dewitt D, Fairhead L, Flato G, Hogan T, Ji M, Kimoto M, Kitoh A, Knutson T, Le Treut H, Li T, Manabe S, Marti O, Mechoso C, Meehl G, Power S, Roeckner E, Sirven J, Terray L, Vintzileos A, Voß R, Wang B, Washington W, Yoshikawa I, Yu J, Zebiak S (2001) ENSIP: the El Niño simulation intercomparison project. Clim Dyn 18(3):255–276.  https://doi.org/10.1007/s003820100174 CrossRefGoogle Scholar
  40. Legeckis R (1977) Long waves in the eastern equatorial Pacific ocean: a view from a geostationary satellite. Science 197(4309):1179–1181CrossRefGoogle Scholar
  41. Levine A, Jin F, McPhaden M (2016) Extreme noise-extreme El Niño: How state-dependent noise forcing creates El Niño-la Niña asymmetry. J Clim.  https://doi.org/10.1175/JCLI-D-16-0091.1
  42. Levine AFZ, Jin FF (2017) A simple approach to quantifying the noise-ENSO interaction. Part I: deducing the state-dependency of the windstress forcing using monthly mean data. Clim Dyn 48(1):1–18.  https://doi.org/10.1007/s00382-015-2748-1 CrossRefGoogle Scholar
  43. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Paver CR, Reagan JR, Johnson DR, Hamilton M, Seidov D (2013) World Ocean Atlas 2013, vol 1: temperature. In: Levitus S (ed) NOAA Atlas NESDIS 73:40. A. Mishonov Technical EdGoogle Scholar
  44. Lyman J, Johnson G, Kessler W (2007) Distinct 17- and 33-day tropical instability waves in subsurface observations. J Phys Oceanogr 37(4):855–872.  https://doi.org/10.1175/JPO3023.1 CrossRefGoogle Scholar
  45. Marchesiello P, Capet X, Menkes C, Kennan S (2011) Submesoscale dynamics in tropical instability waves. Ocean Model 39(1–2):31–46.  https://doi.org/10.1016/j.ocemod.2011.04.011 CrossRefGoogle Scholar
  46. Masina S, Philander S, Bush A (1999) An analysis of tropical instability waves in a numerical model of the Pacific ocean 2. Generation and energetics of the waves. J Geophys Res 104(29):637–29.  https://doi.org/10.1029/1999JC900226 Google Scholar
  47. McGregor S, Ramesh N, Spence P, England MH, McPhaden MJ, Santoso A (2013) Meridional movement of wind anomalies during ENSO events and their role in event termination. Geophys Res Lett.  https://doi.org/10.1002/grl.50136 Google Scholar
  48. Meinen CS, McPhaden MJ (2001) Interannual variability in warm water volume transports in the equatorial pacific during 1993–1999. J Phys Oceanogr 31(5):1324–1345.  https://doi.org/10.1175/1520-0485(2001)031%3c1324:IVIWWV%3e2.0.CO;2
  49. Menkes C, Vialard J, Kennan S, Boulanger J, Madec G (2006) A modeling study of the impact of tropical instability waves on the heat budget of the eastern equatorial Pacific. J Phys Oceanogr 36(5):847–865.  https://doi.org/10.1175/JPO2904.1 CrossRefGoogle Scholar
  50. Moore AM, Kleeman R (1999) Stochastic forcing of ENSO by the intraseasonal oscillation. J Clim 12(5):1199–1220.  https://doi.org/10.1175/1520-0442(1999)012%3c1199:SFOEBT%3e2.0.CO;2
  51. Narapusetty B, Kirtman B (2014) Sensitivity of near-surface atmospheric circulation to tropical instability waves. Clim Dyn 42(11–12):3139–3150.  https://doi.org/10.1007/s00382-014-2167-8 CrossRefGoogle Scholar
  52. Neelin JD (1990) A hybrid coupled general circulation model for El Niño studies. J Atmos Sci 47(5):674–693.  https://doi.org/10.1175/1520-0469(1990)047%3c0674:AHCGCM%3e2.0.CO;2
  53. Penduff T, Juza M, Barnier B, Zika J, Dewar WK, Treguier AM, Molines JM, Audiffren N (2011) Sea level expression of intrinsic and forced ocean variabilities at interannual time scales. J Clim 24(21):5652–5670.  https://doi.org/10.1175/JCLI-D-11-00077.1 CrossRefGoogle Scholar
  54. Pezzi LP, Vialard J, Richards KJ, Menkes C, Anderson D (2004) Influence of ocean–atmosphere coupling on the properties of tropical instability waves. Geophys Res Lett 31(16):  https://doi.org/10.1029/2004GL019995
  55. Philander S (1976) Instabilities of zonal equatorial currents. J Geophys Res 81(21):3725–3735.  https://doi.org/10.1029/JC081i021p03725 CrossRefGoogle Scholar
  56. Puy M, Vialard J, Lengaigne M, Guilyardi E, Voldoire A, Madec G (2016) Modulation of equatorial pacific sea surface temperature response to westerly wind events by the oceanic background state. Clim Dyn, pp 1–25.  https://doi.org/10.1007/s00382-016-3480-1
  57. Santoso A, McPhaden MJ, Cai W (2017) The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev Geophys 55(4):1079–1129.  https://doi.org/10.1002/2017RG000560 CrossRefGoogle Scholar
  58. von Schuckmann K, Brandt P, Eden C (2008) Generation of tropical instability waves in the Atlantic Ocean. J Geophys Res 113(C8):C08–034.  https://doi.org/10.1029/2007JC004712 Google Scholar
  59. Seager R, Blumenthal MB, Kushnir Y (1995) An advective atmospheric mixed layer model for ocean modeling purposes: Global simulation of surface heat fluxes. J Clim 8(8):1951–1964.  https://doi.org/10.1175/1520-0442(1995)008%3c1951:AAAMLM%3e2.0.CO;2
  60. Shchepetkin A, McWilliams J (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9(4):347–404.  https://doi.org/10.1016/j.ocemod.2004.08.002 CrossRefGoogle Scholar
  61. Small RJ, Richards KJ, Xie SP, Dutrieux P, Miyama T (2009) Damping of tropical instability waves caused by the action of surface currents on stress. J Geophys Res 114(C4):  https://doi.org/10.1029/2008JC005147
  62. Small RJ, Curchitser E, Hedstrom K, Kauffman B, Large WG (2015) The Benguela upwelling system: quantifying the sensitivity to resolution and coastal wind representation in a global climate model. J Clim 28(23):9409–9432.  https://doi.org/10.1175/JCLI-D-15-0192.1 CrossRefGoogle Scholar
  63. Stein K, Timmermann A, Schneider N, Jin FF, Stuecker MF (2014) ENSO seasonal synchronization theory. J Clim 27:5285–5310.  https://doi.org/10.1175/JCLI-D-13-00525.1 CrossRefGoogle Scholar
  64. Syu HH, Neelin JD, Gutzler D (1995) Seasonal and interannual variability in a hybrid coupled GCM. J Clim 8(9):2121–2143.  https://doi.org/10.1175/1520-0442(1995)008%3c2121:SAIVIA%3e2.0.CO;2
  65. Tziperman E, Zebiak SE, Cane MA (1997) Mechanisms of seasonal-ENSO interaction. J Atmos Sci 54(1):61–71.  https://doi.org/10.1175/1520-0469(1997)054%3c0061:MOSEI%3e2.0.CO;2
  66. Willett CS, Leben RR, Lavín MF (2006) Eddies and tropical instability waves in the eastern tropical Pacific: a review. Prog Oceanogr 69:218–238.  https://doi.org/10.1016/j.pocean.2006.03.010 CrossRefGoogle Scholar
  67. Zavala-Garay J, Moore A, Perez C, Kleeman R (2003) The response of a coupled model of ENSO to observed estimates of stochastic forcing. J Clim 16(17):2827–2842.  https://doi.org/10.1175/1520-0442
  68. Zelle H, Appeldoorn G, Burgers G, van Oldenborgh GJ (2004) The relationship between sea surface temperature and thermocline depth in the eastern equatorial pacific. J Phys Oceanogr 34(3):643–655.  https://doi.org/10.1175/2523.1 CrossRefGoogle Scholar
  69. Zhang C (2005) Madden-Julian Oscillation. Rev Geophys 43(2):RG2003.  https://doi.org/10.1029/2004RG000158 CrossRefGoogle Scholar
  70. Zhang RH (2014) Effects of tropical instability wave (TIW)-induced surface wind feedback in the tropical pacific ocean. Clim Dyn 42(1):467–485.  https://doi.org/10.1007/s00382-013-1878-6 CrossRefGoogle Scholar
  71. Zhang RH (2015) A hybrid coupled model for the Pacific ocean–atmosphere system. Part I: description and basic performance. Adv Atmos Sci 32(3):301–318.  https://doi.org/10.1007/s00376-014-3266-5 CrossRefGoogle Scholar
  72. Zhang RH (2016) A modulating effect of Tropical Instability Wave (TIW)-induced surface wind feedback in a hybrid coupled model of the tropical Pacific. J Geophys Res.  https://doi.org/10.1002/2015JC011567
  73. Zhang RH, Busalacchi AJ (2008) Rectified effects of tropical instability wave (TIW)-induced atmospheric wind feedback in the tropical Pacific. Geophys Res Lett.  https://doi.org/10.1029/2007GL033028
  74. Zweng M, Reagan J, Antonov J, Locarnini R, Mishonov A, Boyer T, Garcia H, Baranova O, Johnson D, DSeidov, Biddle M (2013) World Ocean Atlas 2013, vo 2: salinity. In: Levitus S (ed) NOAA Atlas NESDIS 74:39. A. Mishonov Technical EdGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Climate Change Research Centre and ARC Centre of Excellence for Climate System ScienceUniversity of New South WalesSydneyAustralia
  2. 2.School of Mathematics and StatisticsUniversity of New South WalesSydneyAustralia
  3. 3.School of Earth, Atmosphere and EnvironmentMonash UniversityMelbourneAustralia
  4. 4.Centre for Southern Hemisphere Oceans Research (CSHOR)CSIRO Oceans and AtmosphereHobartAustralia

Personalised recommendations