Impact of radiation frequency, precipitation radiative forcing, and radiation column aggregation on convection-permitting West African monsoon simulations

  • Toshi Matsui
  • Sara Q. Zhang
  • Stephen E. Lang
  • Wei-Kuo Tao
  • Charles Ichoku
  • Christa D. Peters-Lidard


In this study, the impact of different configurations of the Goddard radiation scheme on convection-permitting simulations (CPSs) of the West African monsoon (WAM) is investigated using the NASA-Unified WRF (NU-WRF). These CPSs had 3 km grid spacing to explicitly simulate the evolution of mesoscale convective systems (MCSs) and their interaction with radiative processes across the WAM domain and were able to reproduce realistic precipitation and energy budget fields when compared with satellite data, although low clouds were overestimated. Sensitivity experiments reveal that (1) lowering the radiation update frequency (i.e., longer radiation update time) increases precipitation and cloudiness over the WAM region by enhancing the monsoon circulation, (2) deactivation of precipitation radiative forcing suppresses cloudiness over the WAM region, and (3) aggregating radiation columns reduces low clouds over ocean and tropical West Africa. The changes in radiation configuration immediately modulate the radiative heating and low clouds over ocean. On the 2nd day of the simulations, patterns of latitudinal air temperature profiles were already similar to the patterns of monthly composites for all radiation sensitivity experiments. Low cloud maintenance within the WAM system is tightly connected with radiation processes; thus, proper coupling between microphysics and radiation processes must be established for each modeling framework.


Convection-permitting simulation West African monsoon Radiation feedback Low cloud feedback 



This study has been funded by the NASA Modeling, Analysis and Prediction (MAP) program (NNH12ZDA001N-MAP: Dr. D. Considine at NASA HQ) and the NASA IDS program (NNH12ZDA001N-IDS: Drs. J. Kaye and H. Maring at NASA HQ). We also thank the NASA Advanced Supercomputing (NAS) Division and NCCS (Project Manager T. Lee at NASA HQ) for providing the computational resources to conduct and analyze the CPSs. The NASA-Unified WRF is maintained at NASA GSFC on the NCCS Discover computer and is available for public release (


  1. Birch CE, Parker DJ, Marsham JH, Copsey D, Garcia-Carreras L (2014) A seamless assessment of the role of convection in the water cycle of the West African monsoon. J Geophys Res Atmos 119:2890–2912. CrossRefGoogle Scholar
  2. Bogenschutz PA, Krueger SK (2013) A simplified PDF parameterization of subgrid- scale clouds and turbulence for cloud-resolving models. J Adv Model Earth Syst 5:195–211. CrossRefGoogle Scholar
  3. Bosilovich MG et al (2015) MERRA-2: initial evaluation of the climatee, NASA/TM-2015-104606, vol 43, p 145.
  4. Chen Y-W, Seiki T, Kodama C, Satoh M, Noda AT (2018) Impact of precipitating ice hydrometeors on longwave radiative effect estimated by a global cloud-system resolving model. J Adv Model Earth Syst. Google Scholar
  5. Chin M, Rood RB, Lin S-J, Müller J-F, Thompson AM (2000) Atmospheric sulfur cycle simulated in the global model GOCART: model description and global properties. J Geophys Res 105(D20):24671–24687. CrossRefGoogle Scholar
  6. Chou M-D, Suarez MJ (1999) A solar radiation parameterization for atmospheric studies. NASA Tech. Rep. NASA/TM-1999-10460, vol 15, p 38.
  7. Chou M-D, Suarez MJ (2001) A thermal infrared radiation parameterization for atmospheric studies. NASA/TM-2001-104606, vol 19, p 55.
  8. Cook KH (1999) Generation of the African easterly jet and its role in determining West African precipitation. J Clim 12:1165–1184.<1165:GOTAEJ>2.0.CO;2 CrossRefGoogle Scholar
  9. Diongue A, Lafore JP, Redelsperger JL, Roca R (2002) Numerical study of a Sahelian synoptic weather system: initiation and mature stages of convection and its interactions with the large-scale dynamics. Quart J Roy Meteorol Soc 128:1899–1927CrossRefGoogle Scholar
  10. Fu Q (1996) An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J Clim 9:2058–2082.<2058:AAPOTS>2.0.CO;2 CrossRefGoogle Scholar
  11. Gallée H, Moufouma-Okia W, Bechtold P, Brasseur O, Dupays I, Marbaix P, Messager C, Ramel R, Lebel T (2004) A high-resolution simulation of a West African rainy season using a regional climate model. J Geophys Res 109:D05108. CrossRefGoogle Scholar
  12. Gentemann CL, Meissner T, Wentz FJ (2010) Accuracy of satellite sea surface temperatures at 7 and 11 GHz. IEEE Trans Geosci Remote Sens 48:1009–1018CrossRefGoogle Scholar
  13. Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res 104(D6):6335–6352. CrossRefGoogle Scholar
  14. Guan H, Yau MK, Davies R (1997) The effects of longwave radiation in a small cumulus cloud. J Atmos Sci 54:2201–2214.<2201:TEOLRI>2.0.CO;2 CrossRefGoogle Scholar
  15. Hannak L, Knippertz P, Fink AH, Kniffka A, Pante G (2017) Why do global climate models struggle to represent low-level clouds in the West African Summer Monsoon? J Clim 30:1665–1687. CrossRefGoogle Scholar
  16. Houze RA Jr, Betts AK (1981) Convection in GATE. Rev Geophys 19(4):541–576. CrossRefGoogle Scholar
  17. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeor 8(1):38–55CrossRefGoogle Scholar
  18. Ichoku C, Ellison LT, Willmot KE, Matsui T, Gatebe CK, Wang J, Wilcox EM, Lee J, Adegoke J, Okonkwo C, Bolten J, Policelli FS, Habib S (2016) Biomass burning, land-cover change, and the hydrological cycle in Northern sub-Saharan Africa. Environ Res Lett. Google Scholar
  19. Klein SA, Jiang X, Boyle J, Malyshev S, Xie S (2006) Diagnosis of the summertime warm and dry bias over the US Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys Res Lett 33:L18805. CrossRefGoogle Scholar
  20. Klinger C, Mayer B, Jakub F, Zinner T, Park S-B, Gentine P (2017) Effects of 3-D thermal radiation on the development of a shallow cumulus cloud field. Atmos Chem Phys 17:5477–5500. CrossRefGoogle Scholar
  21. Kumar SV, Peters-Lidard CD, Tian Y, Houser PR, Geiger J, Olden S, Lighty L, Eastman JL, Doty B, Dirmeyer P, Adams J, Mitchell K, Wood EF, Sheffield J (2006) Land information system—an interoperable framework for high resolution land surface modeling. Environ Model Softw 21:1402–1415CrossRefGoogle Scholar
  22. Kummerow C (1993) On the accuracy of the Eddington approximation for radiative transfer in the microwave frequencies. J Geophys Res 98:2757–2765CrossRefGoogle Scholar
  23. Lang S, Tao W-K, Zeng X, Li Y (2011) Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: tropical convective systems. J Atmos Sci 68:2306–2320CrossRefGoogle Scholar
  24. Lang S, Tao W-K, Chern J-D, Wu D, Li X (2014) Benefits of a fourth ice class in the simulated radar reflectivities of convective systems using a bulk microphysics scheme. J Atmos Sci 71:35833612. CrossRefGoogle Scholar
  25. Li J-LF, Waliser DE, Stephens G, Lee S, L’Ecuyer T, Kato S, Loeb N, Ma H-Y (2013) Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J Geophys Res Atmos 118:8166–8184. CrossRefGoogle Scholar
  26. Li J-LF, Lee W-L, Waliser DE, Neelin JD, Stachnik JP, Lee T (2014) Cloud-precipitation-radiation-dynamics interaction in global climate models: a snow and radiation interaction sensitivity experiment. J Geophys Res Atmos 119:3809–3824. CrossRefGoogle Scholar
  27. Li R, Jin J, Wang SY et al (2015) Significant impacts of radiation physics in the weather research and forecasting model on the precipitation and dynamics of the West African Monsoon. Clim Dyn 44:1583. CrossRefGoogle Scholar
  28. Loeb NG, Manalo-Smith N, Kato S, Miller WF, Gupta SK, Minnis P, Wielicki BA (2003) Angular distribution models for top-of-atmosphere radiative flux estimation from the clouds and the earth’s radiant energy system instrument on the tropical rainfall measuring mission satellite. Part I: methodology J Appl Meteorol 42(2):240–265.<0240:ADMFTO>2.0.CO;2 CrossRefGoogle Scholar
  29. Loeb NG, Kato S, Loukachine K, Manalo-Smith N (2005) Angular distribution models for top-of-atmosphere radiative flux estimation from the clouds and the earth’s radiant energy system instrument on the terra satellite. Part I: Methodology. J Atmos Ocean Technol 22(4):338–351. CrossRefGoogle Scholar
  30. Ma P-L, Zhang K, Shi J-J, Matsui T, Arking A (2012) Direct radiative effect of mineral dust on the development of African easterly wave in late summer, 2003–2007. J Appl Meteorol Climatol 51:2090–2104CrossRefGoogle Scholar
  31. Ma H, Xie S, Klein SA, Williams KD, Boyle JS, Bony S, Douville H, Fermepin S, Medeiros B, Tyteca S, Watanabe M, Williamson D (2014) On the correspondence between mean forecast errors and climate errors in CMIP5 models. J Clim 27:1781–1798. CrossRefGoogle Scholar
  32. Marsham JH, Dixon N, Garcia-Carreras L, Lister GMS, Parker DJ, Knippertz P, Birch C (2013) The role of moist convection in the West African monsoon system: insights from continental-scale convection-permitting simulations. Geophys Res Lett 40:1843–1849. CrossRefGoogle Scholar
  33. Mathon V, Laurent H, Lebel T (2002) Mesoscale convective system rainfall in the Sahel. J Appl Meteor 41:1081–1092.<1081:MCSRIT>2.0.CO;2 CrossRefGoogle Scholar
  34. Matsui T, Jacob JP (2014) Goddard radiation scheme for NU-WRF version 2014. NASA Goddard Space Flight Center, pp 4.
  35. Matsui T, Masunaga H, Kreidenweis SM, Pielke RA Sr, Tao W-K, Chin M, Kaufman Y (2006) Satellite-based assessment of global warm cloud properties associated with aerosols, atmospheric stability, and diurnal cycle. J Geophys Res Aerosol Clouds 111:D17204. CrossRefGoogle Scholar
  36. Matsui TT, Iguchi X, Li M, Han W-K, Tao W, Petersen T, L’Ecuyer R, Meneghini W, Olson CD, Kummerow AY, Hou MR, Schwaller EF, Stocker J, Kwiatkowski (2013) GPM satellite simulator over ground validation sites. Bull Am Meteor Soc 94:1653–1660. CrossRefGoogle Scholar
  37. Matsui T, Santanello J, Shi JJ, Tao W-K, Wu D, Peters-Lidard C, Kemp E, Chin M, Starr D, Sekiguchi M, Aires F (2014) Introducing multisensor satellite radiance-based evaluation for regional Earth System modeling. J Geophys Res 119:8450–8475. Google Scholar
  38. Matsui T, Tao W-K, Munchack SJ, Huffman G, Grecu M (2015) Satellite view of Quasi-equilibrium states in tropical convection and precipitation. Microphys Geophys Res Lett. Google Scholar
  39. Maurer V, Bischoff-Gauß I, Kalthoff N, Gantner L, Roca R, Panitz H-J (2017) Initiation of deep convection in the Sahel in a convection-permitting climate simulation for northern Africa. QJR Meteorol Soc 143:806–816. CrossRefGoogle Scholar
  40. Mitchell K (2005) The community noah land-surface model (LSM), user’s guide, public release version 2.7.1. Accessed 9 Feb 2005
  41. Mohr KI, Thorncroft CD (2006) Intense convective systems in West Africa and their relationship to the African easterly jet. QJR Meteorol Soc 132:163–176. CrossRefGoogle Scholar
  42. Morcrette, J., 2000: On the effects of the temporal and spatial sampling of radiation fields on the ECMWF forecasts and analyses. Mon Weather Rev 128:876–887.<0876:OTEOTT>2.0.CO;2 CrossRefGoogle Scholar
  43. Morcrette J, Mozdzynski G, Leutbecher M (2008) A reduced radiation grid for the ECMWF integrated forecasting system. Mon Weather Rev 136:4760–4772. CrossRefGoogle Scholar
  44. Nakajima T, King MD (1990) Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: theory. J Atmos Sci 47:1878–1893.<1878:DOTOTA>2.0.CO;2 CrossRefGoogle Scholar
  45. Nakanishi M, Niino H (2009) Development of an improved turbulence closure model for the atmospheric boundary layer. J Meteor Soc Jpn 87:895–912CrossRefGoogle Scholar
  46. Newell RE, Kidson JW (1984) African mean wind changes between Sahelian wet and dry periods. J Climatol 4:27–33. CrossRefGoogle Scholar
  47. O’Dell CW, Wentz FJ, Bennartz R (2008) Cloud liquid water path from satellite-based passive microwave observations: a new climatology over the global oceans. J Clim 21:1721–1739. CrossRefGoogle Scholar
  48. Olson WS, Kummerow CD, Yang S, Petty GW, Tao W-K, Bell TL, Braun SA, Wang Y, Lang SE, Johnson DE (2006) Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: improved method and uncertainties. J Appl Meteorol Climatol 45(5):702–720CrossRefGoogle Scholar
  49. Oreopoulos L et al (2012) The continual intercomparison of radiation codes: results from phase I. J Geophys Res 117:D06118. CrossRefGoogle Scholar
  50. Peters-Lidard CD, Kemp EM, Matsui T, Santanello JA Jr, Kumar SV, Jacob JP, Clune T, Tao W-K, Chin M, Hou A, Case JL, Kim D, Kim K-M, Lau W, Liu Y, Shi J-J, Starr D, Tan Q, Tao Z, Zaitchik BF, Zavodsky B, Zhang SQ, Zupanski M (2015) Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-resolved scales. Environ Model Softw 67:149–159. CrossRefGoogle Scholar
  51. Pfeifroth U, Trentmann J, Fink AH, Ahrens B (2016) Evaluating satellite-based diurnal cycles of precipitation in the African Tropics. J Appl Meteor Climatol 55:23–39. CrossRefGoogle Scholar
  52. Pilewskie P, Valero FPJ (1995) Direct observations of excess solar absorption by clouds. Science 267:1626–1629CrossRefGoogle Scholar
  53. Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tölle M, Gutjahr O, Feser F et al (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53:323–361. CrossRefGoogle Scholar
  54. Reale O, Lau KM, da Silva A, Matsui T (2014), Impact of assimilated and interactive aerosol on tropical cyclogenesis. Geophys Res Lett. Google Scholar
  55. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim G-K, Bloom S, Chen J, Collins D, Conaty A, da Silva A et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. CrossRefGoogle Scholar
  56. Rothman LS, Rinsland CP, Goldman A et al (1998) The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation), 1996 edition. J Quant Spectrosc Radiat Transfer 60:665–710CrossRefGoogle Scholar
  57. Rutan D, Kato S, Doelling D, Rose F, Nguyen L, Caldwell T, Loeb N (2015) CERES synoptic product: methodology and validation of surface radiant flux. J Atmos Ocean Technol 32:1121–1143. CrossRefGoogle Scholar
  58. Shi JJ, Tao W-K, Matsui T, Hou A, Lang S, Peters-Lidard C, Jackson G, Cifelli R, Rutledge S, Petersen W (2010) Microphysical properties of the 20–22 January 2007 snow events over Canada: comparison with in-situ and satellite observations. J Appl Meteorol Climatol 49(11):2246–2266CrossRefGoogle Scholar
  59. Shi JJ, Matsui T, Tao W-K, Peters-Lidard C, Chin M, Tan Q, Kemp E (2014) Implementation of an aerosol-cloud microphysics-radiation coupling into the NASA unified WRF: simulation results for the 6–7 August 2006 AMMA special observing period. Q J R Meteorol Soc. Google Scholar
  60. Stein U, Alpert P (1993) Factor separation in numerical simulations. J Atmos Sci 50:2107–2115.<2107:FSINS>2.0.CO;2 CrossRefGoogle Scholar
  61. Stephens GL (2005) Cloud feedbacks in the climate system: a critical review. J Clim 18:237–273. CrossRefGoogle Scholar
  62. Sylla MB, Giorgi F, Ruti PM, Calmanti S, Dell’Aquila A (2011) The impact of deep convection on the West African summer monsoon climate: a regional climate model sensitivity study. QJR Meteorol Soc 137:1417–1430. CrossRefGoogle Scholar
  63. Tao W-K, Wu D, Lang S, Chern J-D, Peters-Lidard C, Fridlind A, Matsui T (2016) High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: further improvements and comparisons between Goddard microphysics schemes and observations. J Geophys Res Atmos 121:1278–1305. CrossRefGoogle Scholar
  64. Tarasova TA, Fomin BA (2007) The use of new parameterizations for gaseous absorption in the CLIRAD-SW solar radiation code for models. J Atmos Ocean Technol 24:1157–1162. CrossRefGoogle Scholar
  65. Thorncroft CD, Blackburn M (1999) Maintenance of the African easterly jet. QJR Meteorol Soc 125:763–786. Google Scholar
  66. Thorncroft CD, Hoskins BJ (1994) An idealized study of African easterly waves. I: a linear view. QJR Meteorol Soc 120:953–982. CrossRefGoogle Scholar
  67. Tian Y, Peters-Lidard CD, Eylander JB, Joyce RJ, Huffman GJ, Adler RF, Hsu K, Turk FJ, Garcia M, Zeng J (2009) Component analysis of errors in satellite-based precipitation estimates. J Geophys Res 114:D24101. CrossRefGoogle Scholar
  68. Tsay S, Stamnes K, Jayaweera K (1989) Radiative energy budget in the cloudy and hazy arctic. J Atmos Sci 46:1002–1018.<1002:REBITC>2.0.CO;2 CrossRefGoogle Scholar
  69. Vizy EK, Cook KH (2002) Development and application of a mesoscale climate model for the tropics: influence of sea surface temperature anomalies on the West African Monsoon.J Geophys Res. Google Scholar
  70. Vizy EK, Cook KH (2017) Mesoscale convective systems and nocturnal rainfall over the West African Sahel: role of the Inter-tropical front. Clim Dyn. Google Scholar
  71. Weisman ML, Skamarock WC, Klemp JB (1997) The resolution dependence of explicitly modeled convective systems. Mon Weather Rev 125:527–548.<0527:TRDOEM>2.0.CO;2 CrossRefGoogle Scholar
  72. Wielicki, BA, Barkstrom BR, Harrison EF, Lee RB III, Smith GL, Cooper JE (1996) Clouds and the earth’s radiant energy system (CERES): an earth observing system experiment, Bull Am Meteor Soc 77:853–868.<0853:CATERE>2.0.CO;2 CrossRefGoogle Scholar
  73. Wilheit T, Kummerow C, Ferraro R (2003) Rainfall algorithms for AMSR-E. IEEE Trans Geosci Remote Sens 41:204–213. CrossRefGoogle Scholar
  74. Xue YK et al (2010) Intercomparison and analyses of the climatology of the West African monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) first model intercomparison experiment. Clim Dyn 35:3–27. CrossRefGoogle Scholar
  75. Yang G, Slingo J (2001) The diurnal cycle in the tropics. Mon Weather Rev 129:784–801CrossRefGoogle Scholar
  76. Yang P, Bi L, Baum BA, Liou K-N, Kattawar GW, Mishchenko MI, Cole B (2013) Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 µm. J Atmos Sci 70:330–347. CrossRefGoogle Scholar
  77. Zhang SQ, Matsui T, Cheung S, Zupanski M, Peters-Lidard C (2017) Impact of assimilated precipitation-sensitive radiances on the NU-WRF simulation of the West African monsoon. Mon Weather Rev. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Earth System Science Interdisciplinary CenterUniversity of MarylandCollege ParkUSA
  3. 3.Science Systems and Applications, Inc.LanhamUSA
  4. 4.Science Applications International CorporationMcLeanUSA

Personalised recommendations