Climate Dynamics

, Volume 52, Issue 1–2, pp 181–196 | Cite as

Quantitative identification of moisture sources over the Tibetan Plateau and the relationship between thermal forcing and moisture transport

  • Chen Pan
  • Bin ZhuEmail author
  • Jinhui Gao
  • Hanqing Kang
  • Tong Zhu


Despite the importance of the Tibetan Plateau (TP) to the surrounding water cycle, the moisture sources of the TP remain uncertain. In this study, the moisture sources of the TP are quantitatively identified based on a 33-year simulation with a horizontal resolution of 1.9° × 2.5° using the Community Atmosphere Model version 5.1 (CAM5.1), in which atmospheric water tracer technology is incorporated. Results demonstrate that the major moisture sources differ over the southern TP (STP) and northern TP (NTP). During the winter, Africa, the TP, and India are the dominant source regions, contributing nearly half of the water vapour over the STP. During the summer, the tropical Indian Ocean (TIO) supplies 28.5 ± 3.6% of the water vapour over the STP and becomes the dominant source region. The dominant moisture source regions of the water vapour over the NTP are Africa (19.0 ± 2.8%) during the winter and the TP (25.8 ± 2.4%) during the summer. The overall relative contribution of each source region to the precipitation is similar to the contribution to the water vapour over the TP. Like most models, CAM5.1 generally overestimates the precipitation over the TP, yielding uncertainty in the absolute contributions to the precipitation. Composite analyses exhibit significant variations in the TIO-supplied moisture transport and precipitation over the STP during the summer alongside anomalous TP heating. This relationship between moisture transport from the TIO and the TP heating primarily involves the dynamic change in the TIO-supplied moisture flux, which further controls the variation in the TIO-contributed precipitation over the STP.


Tibetan Plateau Heat source Moisture source apportionment Moisture transport 



This work was supported by the National Key Research and Development Program of China (2016YFA0602003), the National Natural Science Foundation of China (Grant No. 91544229), and the projects of China Special Fund for Meteorological Research in the Public Interest (GYHY201406001).

Supplementary material

382_2018_4130_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1477 KB)


  1. Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309. CrossRefGoogle Scholar
  2. Beer R, Glavich TA, Rider DM (2001) Tropospheric emission spectrometer for the Earth Observing System’s Aura satellite. Appl Opt 40:2356–2367. CrossRefGoogle Scholar
  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  4. Bolin B (1950) On the influence of the earth’s orography on the general character of the westerlies. Tellus 2:184–195. CrossRefGoogle Scholar
  5. Boos WR, Kuang Z (2010) Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463:218–222. CrossRefGoogle Scholar
  6. Bosilovich MG, Schubert SD (2002) Water vapor tracers as diagnostics of the regional hydrologic cycle. J Hydrometeorol 3: 149–165.<0149:WVTADO>2.0.CO;2Google Scholar
  7. Bosilovich MG, Robertson FR, Chen J (2011) Global energy and water budgets in MERRA. J Clim 24:5721–5739. CrossRefGoogle Scholar
  8. Bothe O, Fraedrich K, Zhu X (2011) Large-scale circulations and Tibetan Plateau summer drought and wetness in a high-resolution climate model. Int J Climatol 31:832–846. CrossRefGoogle Scholar
  9. Bretherton CS, Park S (2009) A new moist turbulence parameterization in the Community Atmosphere Model. J Clim 22:3422–3448. CrossRefGoogle Scholar
  10. Brubaker KL, Entekhabi D, Eagleson PS (1993) Estimation of continental precipitation recycling. J Climate 6: 1077–1089.<1077:EOCPR>2.0.CO;2Google Scholar
  11. Chen B, Xu XD, Yang S, Zhang W (2012) On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theor Appl Climatol 110:423–435. CrossRefGoogle Scholar
  12. Curio J, Maussion F, Scherer D (2015) A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau. Earth Syst Dynam 6:109–124. CrossRefGoogle Scholar
  13. Dong W, Lin Y, Wright JS, Ming Y, Xie Y, Wang B, Luo Y, Huang W, Huang J, Wang L, Tian L, Peng Y, Xu F (2016) Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent. Nat Commun 7:10925. CrossRefGoogle Scholar
  14. Duan AM, Wu GX (2005) Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim Dyn 24:793–807. CrossRefGoogle Scholar
  15. Duan AM, Wu GX, Liang XY (2008) Influence of the Tibetan Plateau on the summer climate patterns over Asia in the IAP/LASG SAMIL model. Adv Atmos Sci 25:518–528. CrossRefGoogle Scholar
  16. Duan A, Li F, Wang M, Wu G (2011) Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon. J Clim 24:5671–5682. CrossRefGoogle Scholar
  17. Emmons LK, Walters S, Hess PG, Lamarque J-F, Pfister GG, Fillmore D, Granier C, Guenther A, Kinnison D, Laepple T, Orlando J, Tie X, Tyndall G, Wiedinmyer C, Baughcum SL, Kloster S (2010) Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci Model Dev 3:43–67. CrossRefGoogle Scholar
  18. Flohn H (1957) Large-scale aspects of the “summer monsoon” in South and East Asia. J Meteorol Soc Jpn 75:180–186CrossRefGoogle Scholar
  19. Gao X, Shi Y, Zhang D, Wu J, Giorgi F, Ji Z, Wang Y (2012) Uncertainties in monsoon precipitation projections over China: results from two high-resolution RCM simulations. Clim Res 52:213–226. CrossRefGoogle Scholar
  20. Gettelman A, Liu X, Ghan SJ, Morrison H, Park S, Conley AJ, Klein SA, Boyle J, Mitchell DL, Li J-LF (2010) Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J Geophys Res 115:D18216. CrossRefGoogle Scholar
  21. Gimeno L, Stohl A, Trigo RM, Dominguez F, Yoshimura K, Yu L, Drumond A, Durán-Quesada AM, Nieto R (2012) Oceanic and terrestrial sources of continental precipitation. Rev Geophys 50:RG4003. CrossRefGoogle Scholar
  22. He H, McGinnis JW, Song Z, Yanai M (1987) Onset of the Asian Summer Monsoon in 1979 and the Effect of the Tibetan Plateau. Mon Weather Rev 15: 1966–1995.<1966:OOTASM>2.0.CO;2Google Scholar
  23. Hsu HH, Liu X (2003) Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall. Geophys Res Lett 30: 2066.
  24. Huffman GJ, Bolvin DT (2011) GPCP version 2.2 combined precipitation data set documentation. NASA Goddard Space Flight Center, Mesoscale Atmospheric Processes Laboratory and Science Systems and Applications, IncGoogle Scholar
  25. Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55. CrossRefGoogle Scholar
  26. Jiménez C, Prigent C, Mueller B, Seneviratne SI, McCabe MF, Wood EF, Rossow WB, Balsamo G, Betts AK, Dirmeyer PA, Fisher JB, Jung M, Kanamitsu M, Reichle RH, Reichstein M, Rodell M, Sheffield J, Tu K, Wang K (2011) Global intercomparison of 12 land surface heat flux estimates. J Geophys Res 116:D02102. CrossRefGoogle Scholar
  27. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S,White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. B Am Meteorol Soc 77: 437–471.<0437:TNYRP>2.0.CO;2Google Scholar
  28. Knoche HR, Kunstmann H (2013) Tracking atmospheric water pathways by direct evaporation tagging: a case study for West Africa. J Geophys Res-Atmos 118:12345–12358. CrossRefGoogle Scholar
  29. Koster R, Jouzel J, Suozzo R, Russell G, Broecker W, Rind D, Eagleson P (1986) Global sources of local precipitation as determined by the NASA/GISS GCM. Geophys Res Lett 13:121–124. CrossRefGoogle Scholar
  30. Lamarque J-F, Emmons LK, Hess PG, Kinnison DE, Tilmes S, Vitt F, Heald CL, Holland EA, Lauritzen PH, Neu J, Orlando JJ, Rasch PJ, Tyndall GK (2012) CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geosci Model Dev 5:369–411. CrossRefGoogle Scholar
  31. Lauritzen PH, Ullrich PA, Nair RD (2011) Atmospheric transport schemes: desirable properties and a semi-Lagrangian view on finite-volume discretizations. Numerical Techniques for Global Atmospheric Models. Lecture Notes Comput Sci Eng. 80:185–250. CrossRefGoogle Scholar
  32. Li C, Yanai M (1996) The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J Clim 9: 358–375.<0358:TOAIVO>2.0.CO;2Google Scholar
  33. Li L, Li W, Barros AP (2013) Atmospheric moisture budget and its regulation of the summer precipitation variability over the southeastern United States. Clim Dyn 41:613–631. CrossRefGoogle Scholar
  34. Manabe S, Terpstra TB (1974) The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments.J Atmos Sci 31: 3–42.<0003:TEOMOT>2.0.CO;2Google Scholar
  35. Mölg T, Maussion F, Scherer D (2014) Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat Clim Change 4:68–73. CrossRefGoogle Scholar
  36. Morrison H, Gettelman A (2008) A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: description and numerical tests. J Clim 21:3642–3659. CrossRefGoogle Scholar
  37. Neale RB, Chen C-C, Gettelman A, Lauritzen PH, Park S, Williamson DL, Conley AJ, Garcia R, Kinnison D, Lamarque J-F, Marsh D, Mills M, Smith AK, Tilmes S, Vitt F, Morrison H, Gameron-Smith P, Collins WD, Iacono MJ, Easter RC, Ghan SJ, Liu X, Rasch PJ, Taylor MA (2012) Description of the NCAR community atmosphere model (CAM5). NCAR Technical Note NCAR/TN-486 + STR, p 275Google Scholar
  38. Numaguti A (1999) Origin and recycling processes of precipitating water over the Eurasian continent: experiments using an atmospheric general circulation model. J Geophys Res 104:1957–1972. CrossRefGoogle Scholar
  39. Pan C, Zhu B, Gao J, Kang H (2017) Source apportionment of atmospheric water over East Asia—a source tracer study in CAM5.1. Geosci Model Dev 10:673–688. CrossRefGoogle Scholar
  40. Park S, Bretherton CS (2009) The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J Clim 22:3449–3469. CrossRefGoogle Scholar
  41. Park S, Bretherton CS, Rasch PJ (2014) Integrating cloud processes in the Community Atmosphere Model, version 5. J Clim 27:6821–6856. CrossRefGoogle Scholar
  42. Rasch PJ, Mahowald NM, Eaton BE (1997) Representations of transport, convection, and the hydrologic cycle in chemical transport models: implications for the modeling of short-lived and soluble species. J Geophys Res 102:28127–28138. CrossRefGoogle Scholar
  43. Rasch PJ, Coleman DB, Mahowald N, Williamson DL (2006) Characteristics of atmospheric transport using three numerical formulations for atmospheric dynamics in a single GCM framework. J Clim 19:2243–2266. CrossRefGoogle Scholar
  44. Raymond DJ, Blyth AM (1986) A stochastic mixing model for nonprecipitating cumulus clouds. J Atmos Sci 43: 2708–2718.<2708:ASMMFN>2.0.CO;2Google Scholar
  45. Raymond DJ, Blyth AM (1992) Extension of the stochastic mixing model to cumulonimbus clouds. J Atmos Sci 49: 1968–1983.<1968:EOTSMM>2.0.CO;2Google Scholar
  46. Richter JH, Rasch PJ (2008) Effects of convective momentum transport on the atmospheric circulation in the community atmosphere model, version 3. J Clim 21:1487–1499. CrossRefGoogle Scholar
  47. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim G-K, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. CrossRefGoogle Scholar
  48. Rotman DA, Atherton CS, Bergmann DJ, Cameron-Smith PJ, Chuang CC, Connell PS, Connel PS, Dignon JE, Franz A, Grant KE, Kinnison DE, Molenkamp CR, Proctor DD, Tannahill JR (2004) IMPACT, the LLNL 3-D global atmospheric chemical transport model for the combined troposphere and stratosphere: model description and analysis of ozone and other trace gases. J Geophys Res 109:D04303. CrossRefGoogle Scholar
  49. Singh HA, Bitz CM, Nusbaumer J, Noone DC (2016) A mathematical framework for analysis of water tracers: Part 1: development of theory and application to the preindustrial mean state. J Adv Model Earth Syst 8:991–1013. CrossRefGoogle Scholar
  50. Sodemann H, Wernli H, Schwierz C (2009) Sources of water vapour contributing to the Elbe flood in August 2002—a tagging study in a mesoscale model. QJR Meteorol Soc 135:205–223. CrossRefGoogle Scholar
  51. Stohl A, James P (2004) A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J Hydrometeorol 5: 656–678.<0656:ALAOTA>2.0.CO;2Google Scholar
  52. Su F, Duan X, Chen D, Hao Z, Cuo L (2013) Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim 26:3187–3208. CrossRefGoogle Scholar
  53. Sun B, Wang H (2014) Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART. J Clim 27:2457–2474. CrossRefGoogle Scholar
  54. Thomas EK, Huang Y, Clemens SC, Colman SM, Morrill C, Wegener P, Zhao J (2016) Changes in dominant moisture sources and the consequences for hydroclimate on the northeastern Tibetan Plateau during the past 32 kyr. Quat Sci Rev 131:157–167. CrossRefGoogle Scholar
  55. Tian B, Manning E, Fetzer E, Olsen E, Olsen E, Wong S (2014) AIRS/AMSU/HSB Version 6 Level 3 Product User Guide. Tech. Rep., Jet Propulsion Laboratory, Pasadena.
  56. Ventura V, Paciorek JI, Risbey JS (2004) Controlling the proportion of falsely rejected hypotheses when conducting multiple tests with climatological data. J Clim 17:4343–4356. CrossRefGoogle Scholar
  57. Wang B, Bao Q, Hoskins B, Wu G, Liu Y (2008) Tibetan Plateau warming and precipitation changes in East Asia. Geophys Res Lett 35:L14702. CrossRefGoogle Scholar
  58. Wang Z, Duan A, Wu G (2014) Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in East China: case studies using the WRF model. Clim Dyn 42:2885–2898. CrossRefGoogle Scholar
  59. Wang Z, Duan A, Yang S, Ullah K (2017) Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau. J Geophys Res-Atmos 122:614–630. CrossRefGoogle Scholar
  60. Wei J, Jin Q, Yang Z-L, Dirmeyer PA (2016) Role of ocean evaporation in California droughts and floods. Geophys Res Lett 43:6554–6562. CrossRefGoogle Scholar
  61. Wilks DS (2006) On “field significance” and the false discovery rate. J Appl Meteor Climatol 45:1181–1189. CrossRefGoogle Scholar
  62. Wilks DS (2016) The stippling shows statistically significant grid points: how research results are routinely overstated and overinterpreted, and what to do about it. B Am Meteorol Soc 97:2263–2273. CrossRefGoogle Scholar
  63. Worden J, Noone D, Bowman K, Beer R, Eldering A, Fisher B, Gunson M, Goldman A, Herman R, Kulawik SS, Lampel M, Osterman G, Rinsland C, Rodgers C, Sander S, Shephard M, Webster CR, Lampel M (2007) Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445:528–532. CrossRefGoogle Scholar
  64. Wu G, Zhang Y (1998) Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon Weather Rev 126:913–927. CrossRefGoogle Scholar
  65. Wu G, Liu Y, Wang T, Wan R, Liu X, Li W, Wang Z, Zhang Q, Duan A, Liang X (2007) The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J Hydrol 8:770–789. Google Scholar
  66. Wu G, Liu Y, He B, Bao Q, Duan A, Jin FF (2012) Thermal controls on the Asian summer monsoon. Sci Rep 2:404. CrossRefGoogle Scholar
  67. Xu X, Lu C, Shi X, Gao S (2008) World water tower: an atmospheric perspective. Geophys Res Lett 35:L20815. CrossRefGoogle Scholar
  68. Xu X, Lu C, Ding Y, Shi X, Guo Y, Zhu W (2013) What is the relationship between China summer precipitation and the change of apparent heat source over the Tibetan Plateau? Atmos Sci Let 14:227–234. CrossRefGoogle Scholar
  69. Xu X, Zhao T, Lu C, Guo Y, Chen B, Liu R, Li Y, Shi X (2014) An important mechanism sustaining the atmospheric” water tower” over the Tibetan Plateau. Atmos Chem Phys 14:11287–11295. CrossRefGoogle Scholar
  70. Yanai M, Wu GX (2006) Effects of the Tibetan Plateau. In: Wang B (ed) The Asian monsoon. Springer, Berlin, pp 514–549Google Scholar
  71. Yanai M, Esbensen S, Chu JH (1973) Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci 30:611–627.<0611:DOBPOT>2.0.CO;2Google Scholar
  72. Yanai MH, Li C, Song Z (1992) Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J Meteorol Soc Jpn 70:319–351CrossRefGoogle Scholar
  73. Yang M, Yao T, Wang H, Tian L, Gou X (2006) Estimating the criterion for determining water vapour sources of summer precipitation on the northern Tibetan Plateau. Hydrol Process 20:505–513. CrossRefGoogle Scholar
  74. Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet Change 112:79–91. CrossRefGoogle Scholar
  75. Yao T, Masson-Delmotte V, Gao J, Yu W, Yang X, Risi C, Sturm C, Werner M, Zhao H, He Y, Ren W, Tian L, Shi C, Hou S (2013) A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations. Rev Geophys 51:525–548. CrossRefGoogle Scholar
  76. Yeh TC, Lo SW, Chu PC (1957) The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding. Acta Meteor Sin 28:108–121Google Scholar
  77. Yu ET, Wang HJ, Sun JQ (2010) A quick report on a dynamical downscaling simulation over China using the nested model. Atmos Oceanic Sci Lett 3:325–329. CrossRefGoogle Scholar
  78. Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos Ocean 33:407–446. CrossRefGoogle Scholar
  79. Zhang C, Tang Q, Chen D (2017) Recent changes in the moisture source of precipitation over the Tibetan Plateau. J Clim 30:1807–1819. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chen Pan
    • 1
    • 2
    • 3
    • 4
  • Bin Zhu
    • 1
    • 2
    • 3
    • 4
    Email author
  • Jinhui Gao
    • 1
    • 2
    • 3
    • 4
  • Hanqing Kang
    • 1
    • 2
    • 3
    • 4
  • Tong Zhu
    • 5
    • 6
  1. 1.Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological AdministrationNanjing University of Information Science and TechnologyNanjingChina
  2. 2.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina
  3. 3.Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)Nanjing University of Information Science and TechnologyNanjingChina
  4. 4.Joint International Research Laboratory of Climate and Environment Change (ILCEC)Nanjing University of Information Science and TechnologyNanjingChina
  5. 5.CIRA, Colorado State UniversityFort CollinsUSA

Personalised recommendations