Climate Dynamics

, Volume 51, Issue 9–10, pp 3507–3520 | Cite as

On the spectral characteristics of the Atlantic multidecadal variability in an ensemble of multi-century simulations

  • Irene Mavilia
  • Alessio Bellucci
  • Panos J. Athanasiadis
  • Silvio Gualdi
  • Rym Msadek
  • Yohan Ruprich-Robert


The Atlantic multidecadal variability (AMV) is a coherent pattern of variability of the North Atlantic sea surface temperature field affecting several components of the climate system in the Atlantic region and the surrounding areas. The relatively short observational record severely limits our understanding of the physical mechanisms leading to the AMV. The present study shows that the spatial and temporal characteristics of the AMV, as assessed from the historical records, should also be considered as highly uncertain. Using 11 multi-century preindustrial climate simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database, we show that the AMV characteristics are not constant along the simulation when assessed from different 200-year-long periods to match the observed period length. An objective method is proposed to test whether the variations of the AMV characteristics are consistent with stochastic internal variability. For 7 out of the 11 models analysed, the results indicate a non-stationary behaviour for the AMV time series. However, the possibility that the non-stationarity arises from sampling errors can be excluded with high confidence only for one of the 7 models. Therefore, longer time series are needed to robustly assess the AMV characteristics. In addition to any changes imposed to the AMV by external forcings, the detected dependence on the time interval identified in most models suggests that the character of the observed AMV may undergo significant changes in the future.


  1. Ba J, Keenlyside NS, Latif M, Park W, Ding H, Lohmann K et al (2014) A multi-model comparison of Atlantic multidecadal variability. Clim Dyn 43(9–10):2333–2348CrossRefGoogle Scholar
  2. Bellucci A, Mariotti A, Gualdi S (2017) The role of forcings in the 20th century North Atlantic multi-decadal variability: the 1940–1975 North Atlantic cooling case study. J Clim 30:7317–7337CrossRefGoogle Scholar
  3. Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:228–232CrossRefGoogle Scholar
  4. Brockwell PJ, Davis RA (1991) Time series: theory and methods. Springer, New YorkCrossRefGoogle Scholar
  5. DelSole T, Tippett MK, Shukla J (2011) A significant component of unforced multidecadal variability in the recent acceleration of global warming. J Clim 24:909–926CrossRefGoogle Scholar
  6. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676CrossRefGoogle Scholar
  7. Deser C, Blackmon ML (1993) Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J Clim 6:1743–1753CrossRefGoogle Scholar
  8. Deshayes J, Curry R, Msadek R (2014) CMIP5 model intercomparison of freshwater budget and circulation in the North Atlantic. J Clim 27:3298–3317CrossRefGoogle Scholar
  9. Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10:2147–2153CrossRefGoogle Scholar
  10. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28(10):2077–2080CrossRefGoogle Scholar
  11. Frankcombe LM, von der Heydt A, Dijkstra HA (2010) North Atlantic multidecadal climate variability: an investigation of dominant time scales and processes. J Clim 23(13):3626–3638CrossRefGoogle Scholar
  12. Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in atlantic hurricane activity: causes and implications. Science 293:474CrossRefGoogle Scholar
  13. Gray ST, Graumlich LJ, Betancourtv JL, Pederson GT (2004) A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. Geophys Res Lett 31:L12205CrossRefGoogle Scholar
  14. Hasselmann K (1976) Stochastic climate models, Part I. Theory. Tellus 28:473–485CrossRefGoogle Scholar
  15. Huang J, Higuchi K, Shabbar A (1998) The relationship between the North Atlantic oscillation and El Niño-Southern oscillation. Geophys Res Lett 25:2707–2710CrossRefGoogle Scholar
  16. Hurrell JW, Van Loon H (1997) Decadal variations in climate associated with the North Atlantic oscillation. Clim Change 36:301–326CrossRefGoogle Scholar
  17. Kilbourne KH, Alexander MA, Nye JA (2014) A low latitude paleoclimate perspective on Atlantic multidecadal variability. J Mar Syst 133:4–13CrossRefGoogle Scholar
  18. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708CrossRefGoogle Scholar
  19. Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33:L17706CrossRefGoogle Scholar
  20. Kushnir Y (1994) Interdecadal variations in North Atlantic Sea surface temperature and associated atmospheric conditions. J Clim 7:141–157CrossRefGoogle Scholar
  21. Latif M, Collins M, Pohlmann H, Keenlyside NS (2006) A review of predictability studies of Atlantic sector climate on decadal time scales. J Clim 19:5971–5987CrossRefGoogle Scholar
  22. Latif M, Keenlyside NS (2011) A perspective on decadal climate variability and predictability. Deep Sea Res. Part II 58(17–18):1880–1894CrossRefGoogle Scholar
  23. Mariotti A, Dell’Aquila A (2012) Decadal climate variability in the Mediterranean region: roles of large-scale forcings and regional processes. Clim Dyn 38:1129–1145CrossRefGoogle Scholar
  24. Marullo S, Artale V, Santoleri R (2011) The SST multidecadal variability in the Atlantic–Mediterranean region and its relation to AMO. J Clim 24:4385–4401CrossRefGoogle Scholar
  25. Medhaug I, Furevik T (2011) North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation. Ocean Sci 7:389–404CrossRefGoogle Scholar
  26. Menary MB, Hodson DLR, Robson JI, Sutton RT, Wood RA, Hunt JA (2015) Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability. Geophys Res Lett 42:5926–5934CrossRefGoogle Scholar
  27. Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694CrossRefGoogle Scholar
  28. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407CrossRefGoogle Scholar
  29. Rotstayn LD, Lohmann U (2002) Tropical rainfall trends and the indirect aerosol effect. J Clim 15:2103–2116CrossRefGoogle Scholar
  30. Saenger C, Cohen AL, Oppo DW, Halley RB, Carilli JE (2009) Surface-temperature trends and variability in the low-latitude North Atlantic since 1552. Nat Geosci 2:492–495CrossRefGoogle Scholar
  31. Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723–726CrossRefGoogle Scholar
  32. Sutton RT, Dong B (2012) Atlantic Ocean influence on a shift in European climate in the 1990s. Nat Geosci 5:788–792CrossRefGoogle Scholar
  33. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115CrossRefGoogle Scholar
  34. Swingedouw D, Mignot J, Labetoulle S, Gilardi E, Madec G (2013) Initialisation and predictability of the AMOC over the last 50 years in a climate model. Clim Dyn 40:23981–23990CrossRefGoogle Scholar
  35. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  36. Terray L (2012) Evidence for multiple drivers of North Atlantic multi-decadal climate variability. Geophys Res Lett 39:L19712CrossRefGoogle Scholar
  37. Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70(9):1055–1096CrossRefGoogle Scholar
  38. Ting M, Kushnir Y, Seager R, Li C (2009) Forced and internal twentieth-century SST trends in the North Atlantic. J Clim 22:1469–1481CrossRefGoogle Scholar
  39. Ting M, Kushnir Y, Seager R, Li C (2011) Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys Res Lett 38:L17705CrossRefGoogle Scholar
  40. Ting M, Kushnir Y, Li C (2014) North Atlantic multidecadal SST oscillation: external forcing versus internal variability. J Mar Syst 133:27–38CrossRefGoogle Scholar
  41. Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704CrossRefGoogle Scholar
  42. Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 36:L12702CrossRefGoogle Scholar
  43. Zanchettin D, Rubino A, Jungclaus JH (2010) Intermittent multidecadal-to-centennial fluctuations dominate global temperature evolution over the last millennium. Geophys Res Lett 37:L14702CrossRefGoogle Scholar
  44. Zanchettin D, Bothe O, Müller W, Bader J, Jungclaus JH (2014) Different flavors of the Atlantic multidecadal variability. Clim Dyn 42(1–2):381–399CrossRefGoogle Scholar
  45. Zhang R (2008) Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys Res Lett 35:L20705CrossRefGoogle Scholar
  46. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712CrossRefGoogle Scholar
  47. Zhang L, Wang C (2013) Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J Geophys Res Oceans 118(10):5772–5791CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Istituto di Scienze dell’Atmosfera e del Clima (CNR-ISAC)BolognaItaly
  2. 2.Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC)BolognaItaly
  3. 3.Istituto Nazionale di Geofisica e Vulcanologia (INGV)BolognaItaly
  4. 4.Centre National de la Recherche Scientifique (CNRS)/CERFACSToulouseFrance
  5. 5.Barcelona Supercomputing Center (BSC)BarcelonaSpain

Personalised recommendations