Skip to main content

Advertisement

Log in

Assessment of CNRM coupled ocean-atmosphere model sensitivity to the representation of aerosols

Climate Dynamics Aims and scope Submit manuscript

Abstract

Atmospheric aerosols can significantly affect the Earth’s radiative balance due to absorption, scattering and aerosol-cloud interactions. Although our understanding of aerosol properties has improved over recent decades, aerosol radiative forcing remains as one of the largest uncertainties when attributing recent and projecting future anthropogenic climate change. Ensembles of a coupled ocean-atmosphere general circulation model were used to investigate how the representation of aerosols within the model can affect climate. The control simulation consisted of a 30-year simulation with an interactive aerosol scheme and aerosol emissions that evolve from 1980–2009. The sensitivity tests included using constant 1980 emissions, using prescribed 2-D monthly mean AODs, modifying the aerosol vertical distribution, altering aerosol optical properties, and changing the parameters used for calculating the aerosol first indirect effect. The results of these sensitivity studies show how modifying certain aspects of the aerosol scheme can significantly affect radiative flux and temperature. In particular, it was shown that compared to the control simulation the use of constant 1980 aerosol emissions decreased the average winter surface temperature of the Arctic by 0.2 K and that the use of prescribed 2-D monthly mean AODs reduced the annual global surface temperature by 0.3 K. Increasing the vertical distribution of anthropogenic aerosols in the model and altering aerosol optical properties modified localised radiative fluxes and temperatures, but the most significant change in global surface temperature (1.3 K) was caused by removing sea salt and organic matter from the calculation of cloud droplet number concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Baker L, Collins W, Olivié D, Cherian R, Hodnebrog Ø, Myhre G, Quaas J (2015) Climate responses to anthropogenic emissions of short-lived climate pollutants. Atmos Chem Phys 15(14):8201–8216

    Article  Google Scholar 

  • Booth BB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484(7393):228–232

    Article  Google Scholar 

  • Boucher O, Lohmann U (1995) The sulfate-CCN-cloud albedo effect. Tellus B 47(3):281–300

    Article  Google Scholar 

  • Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh S, Sherwood S, Stevens B, Zhang X (2013) Clouds and Aerosols. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, book section 7:571–658. https://doi.org/10.1017/CBO9781107415324.016

  • Bozzo A, Remy S, Benedetti A, Flemming J, Bechtold P, Rodwell M, Morcrette J (2017) Implementation of a CAMS-based aerosol climatology in the IFS. ECMWF Technical Memorandum 801

  • Brock CA, Wagner NL, Anderson BE, Beyersdorf A, Campuzano-Jost P, Day DA, Diskin GS, Gordon TD, Jimenez JL, Lack DA et al (2016) Aerosol optical properties in the southeastern United States in summer-Part 2: sensitivity of aerosol optical depth to relative humidity and aerosol parameters. Atmos Chem Phys 16(8):5009–5019

    Article  Google Scholar 

  • Chervin RM, Schenider SH (1976) On determining the statistical significance of climate experiments with general circulation models. J Atmos Sci 33(3):405–412

    Article  Google Scholar 

  • Chin M, Diehl T, Tan Q, Prospero J, Kahn R, Remer L, Yu H, Sayer A, Bian H, Geogdzhayev I et al (2014) Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmos Chem Phys 14:3657–3690

    Article  Google Scholar 

  • Cook J, Highwood E (2004) Climate response to tropospheric absorbing aerosols in an intermediate general-circulation model. Quart J R Meteorol Soc 130(596):175–191

    Article  Google Scholar 

  • Cuxart J, Bougeault P, Redelsperger JL (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart J R Meteorol Soc 126(562):1–30

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hlm EV, Isaksen L, Kllberg P, Khler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thpaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137(656):553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Dong B, Sutton RT, Shaffrey L (2017) Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over western europe. Clim Dyn 48(5–6):1537–1554

    Article  Google Scholar 

  • Fan J, Wang Y, Rosenfeld D, Liu X (2016) Review of aerosol-cloud interactions: mechanisms, significance, and challenges. J Atmos Sci 73(11):4221–4252

    Article  Google Scholar 

  • Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins WJ, Cox P, Driouech F, Emori S, Eyring V, et al (2013) Evaluation of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2013 5:741–866

  • Forster PM, Richardson T, Maycock AC, Smith CJ, Samset BH, Myhre G, Andrews T, Pincus R, Schulz M (2016) Recommendations for diagnosing effective radiative forcing from climate models for CMIP6. J Geophys Res: Atmos 121(20):12460–12475. https://doi.org/10.1002/2016JD025320

    Article  Google Scholar 

  • Ghan SJ (2013) Technical note: Estimating aerosol effects on cloud radiative forcing. Atmospheric Chemistry and Physics 13(19):9971–9974. https://doi.org/10.5194/acp-13-9971-2013, http://www.atmos-chem-phys.net/13/9971/2013/

    Article  Google Scholar 

  • Gregory J, Ingram W, Palmer M, Jones G, Stott P, Thorpe R, Lowe J, Johns T, Williams K (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31(3):L03205. https://doi.org/10.1029/2003GL018747

    Article  Google Scholar 

  • Grythe H, Ström J, Krejci R, Quinn P, Stohl A (2014) A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements. Atmos Chem Phys 14(3):1277–97

    Article  Google Scholar 

  • Guérémy J (2011) A continuous buoyancy based convection scheme: one-and three-dimensional validation. Tellus A 63(4):687–706

    Article  Google Scholar 

  • Guth J, Josse B, Marécal V, Joly M, Hamer P (2016) First implementation of secondary inorganic aerosols in the MOCAGE version R2. 15.0 chemistry transport model. Geosci Model Dev 9(1):137–160

    Article  Google Scholar 

  • Hansen Je, Sato M, Ruedy R, Nazarenko L, Lacis A, Schmidt G, Russell G, Aleinov I, Bauer M, Bauer S, et al (2005) Efficacy of climate forcings. J Geophys Res: Atmos 110(D18):D18,104–1

  • Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev geophys 38(4):513–543

    Article  Google Scholar 

  • Jo DS, Park RJ, Lee S, Kim SW, Zhang X (2016) A global simulation of brown carbon: implications for photochemistry and direct radiative effect. Atmos Chem Phys 16(5):3413–3432

    Article  Google Scholar 

  • Josse B, Simon P, Peuch VH (2004) Radon global simulations with the multiscale chemistry and transport model MOCAGE. Tellus B 56(4):339–356

    Article  Google Scholar 

  • Kahn RA, Gaitley BJ, Martonchik JV, Diner DJ, Crean KA, Holben B (2005) Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J Geophys Res: Atmos 110(D10). https://doi.org/10.1029/2004JD004706

  • Kahn RA, Gaitley BJ, Garay MJ, Diner DJ, Eck TF, Smirnov A, Holben BN (2010) Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. J Geophys Res: Atmos 115(D23). https://doi.org/10.1029/2010JD014601

  • Kaufmann RK, Kauppi H, Mann ML, Stock JH (2011) Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc Natl Acad Sci 108(29):11790–11793

    Article  Google Scholar 

  • Kipling Z, Stier P, Johnson CE, Mann GW, Bellouin N, Bauer SE, Bergman T, Chin M, Diehl T, Ghan SJ et al (2016) What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3-UKCA and inter-model variation from AeroCom Phase II. Atmos Chem Phys 16(4):2221–2241

    Article  Google Scholar 

  • Kühn T, Partanen AI, Laakso A, Lu Z, Bergman T, Mikkonen S, Kokkola H, Korhonen H, Räisänen P, Streets D et al (2014) Climate impacts of changing aerosol emissions since 1996. Geophys Res Lett 41(13):4711–4718

    Article  Google Scholar 

  • Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B et al (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10(15):7017–7039

    Article  Google Scholar 

  • Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ (2007) Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. Journal of Geophysical Research: Atmospheres 112(D13). https://doi.org/10.1029/2006JD007811

    Google Scholar 

  • Li J, Han Z (2016) Seasonal variation of nitrate concentration and its direct radiative forcing over East Asia. Atmosphere 7(8):105

    Article  Google Scholar 

  • Loeb NG, Su W (2010) Direct aerosol radiative forcing uncertainty based on a radiative perturbation analysis. J Clim 23(19):5288–5293

    Article  Google Scholar 

  • Lopez P (2002) Implementation and validation of a new prognostic large-scale cloud and precipitation scheme for climate and data-assimilation purposes. Quart J R Meteorol Soc 128(579):229–257

    Article  Google Scholar 

  • Ma X, Von Salzen K, Li J (2008) Modelling sea salt aerosol and its direct and indirect effects on climate. Atmos Chem Phys 8(5):1311–1327

    Article  Google Scholar 

  • Madec G (2008) Nemo ocean engine: Note du pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288–1619. Tech. rep

  • Markowicz KM, Flatau PJ, Ramana M, Crutzen P, Ramanathan V (2002) Absorbing Mediterranean aerosols lead to a large reduction in the solar radiation at the surface. Geophysical Research Letters 29(20)

    Article  Google Scholar 

  • Masson V, Le Moigne P, Martin E, Faroux S, Alias A, Alkama R, Belamari S, Barbu A, Boone A, Bouyssel F et al (2013) The SURFEXv7. 2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci Model Dev 6:929–960

    Article  Google Scholar 

  • McCoy DT, Bender FAM, Mohrmann JKC, Hartmann DL, Wood R, Grosvenor DP (2017) The global aerosol-cloud first indirect effect estimated using MODIS, MERRA, and AeroCom. Journal of Geophysical Research: Atmospheres https://doi.org/10.1002/2016JD026141

    Google Scholar 

  • Menon S, Genio ADD, Koch D, Tselioudis G (2002) GCM simulations of the aerosol indirect effect: sensitivity to cloud parameterization and aerosol burden. J Atmos Sci 59(3):692–713

    Article  Google Scholar 

  • Michou M, Nabat P, Saint-Martin D (2015) Development and basic evaluation of a prognostic aerosol scheme (v1) in the CNRM Climate Model CNRM-CM6. Geosci Model Dev 8(3):501–531

    Article  Google Scholar 

  • Mishra AK, Koren I, Rudich Y (2015) Effect of aerosol vertical distribution on aerosol-radiation interaction: A theoretical prospect. Heliyon 1(2):e00,036

    Article  Google Scholar 

  • Morcrette JJ, Boucher O, Jones L, Salmond D, Bechtold P, Beljaars A, Benedetti A, Bonet A, Kaiser J, Razinger M et al (2009) Aerosol analysis and forecast in the European Centre for medium-range weather forecasts integrated forecast system: Forward modeling. Journal of Geophysical Research: Atmospheres 114(D6). https://doi.org/10.1029/2008JD011235, http://dx.doi.org/https://doi.org/10.1029/2008JD011235

  • Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and Natural Radiative Forcing. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, book section 8:659–740. https://doi.org/10.1017/CBO9781107415324.018

  • Myhre G, Aas W, Cherian R, Collins W, Faluvegi G, Flanner M, Forster P, Hodnebrog Ø, Klimont Z, Mülmenstädt J, Myhre CL, Olivié D, Prather M, Quaas J, Samset BH, Schnell JL, Schulz M, Shindell D, Skeie RB, Takemura T, Tsyro S (2016) Multi-model simulations of aerosol and ozone radiative forcing for the period 1990–2015. Atmos Chem Phys Discuss 2016:1–21. https://doi.org/10.5194/acp-2016-594

    Article  Google Scholar 

  • Nabat P, Somot S, Mallet M, Chiapello I, Morcrette J, Solmon F, Szopa S, Dulac F, Collins W, Ghan S et al (2013) A 4-D climatology (1979–2009) of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products. Atmos Meas Tech 6(5):1287

    Article  Google Scholar 

  • Nabat P, Somot S, Mallet M, Sanchez-Lorenzo A, Wild M (2014) Contribution of anthropogenic sulfate aerosols to the changing Euro-Mediterranean climate since 1980. Geophys Res Lett 41(15):5605–5611

    Article  Google Scholar 

  • Nabat P, Somot S, Mallet M, Michou M, Sevault F, Driouech F, Meloni D, di Sarra A, Di Biagio C, Formenti P, Sicard M, Léon JF, Bouin MN (2015) Dust aerosol radiative effects during summer 2012 simulated with a coupled regional aerosol-atmosphere-ocean model over the Mediterranean. Atmospheric Chemistry and Physics 15(6):3303–3326. https://doi.org/10.5194/acp-15-3303-2015, http://www.atmos-chem-phys.net/15/3303/2015/

    Article  Google Scholar 

  • Navarro JA, Varma V, Riipinen I, Seland Ø, Kirkevåg A, Struthers H, Iversen T, Hansson HC, Ekman A (2016) Amplification of Arctic warming by past air pollution reductions in Europe. Nat Geosci 9(4):277–281

    Article  Google Scholar 

  • Peuch VH, Amodei M, Barthet T, Cathala M, Josse B, Michou M, Simon P (1999) MOCAGE, MOdèle de Chimie Atmosphérique à Grande Echelle. In: Proceedings of Météo-France workshop on atmospheric modelling, pp 33–36

  • Piriou JM, Redelsperger JL, Geleyn JF, Lafore JP, Guichard F (2007) An approach for convective parameterization with memory: separating microphysics and transport in grid-scale equations. J Atmos Sci 64(11):4127–4139

    Article  Google Scholar 

  • Quaas J (2015) Approaches to observe anthropogenic aerosol-cloud interactions. Curr Clim Change Rep 1(4):297–304

    Article  Google Scholar 

  • Quaas J, Boucher O (2005) Constraining the first aerosol indirect radiative forcing in the LMDZ GCM using POLDER and MODIS satellite data. Geophysical research letters 32(17): 10.1029/2005GL023850, http://dx.doi.org/10.1029/2005GL023850

  • Quaas J, Ming Y, Menon S, Takemura T, Wang M, Penner JE, Gettelman A, Lohmann U, Bellouin N, Boucher O, Sayer AM, Thomas GE, McComiskey A, Feingold G, Hoose C, Kristjánsson JE, Liu X, Balkanski Y, Donner LJ, Ginoux PA, Stier P, Grandey B, Feichter J, Sednev I, Bauer SE, Koch D, Grainger RG, Kirkevåg A, Iversen T, Seland Ø, Easter R, Ghan SJ, Rasch PJ, Morrison H, Lamarque JF, Iacono MJ, Kinne S, Schulz M (2009) Aerosol indirect effects general circulation model intercomparison and evaluation with satellite data. Atmos Chem Phys 9(22):8697–8717. https://doi.org/10.5194/acp-9-8697-2009

    Article  Google Scholar 

  • Ramanathan V, Crutzen P, Kiehl J, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294(5549):2119–2124

    Article  Google Scholar 

  • Redon EC, Lemonsu A, Masson V, Morille B, Musy M (2017) Implementation of street trees within the solar radiative exchange parameterization of TEB in SURFEX v8.0. Geosci Model Dev 10(1):385–411

    Article  Google Scholar 

  • Saleh R, Marks M, Heo J, Adams PJ, Donahue NM, Robinson AL (2015) Contribution of brown carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning emissions. J Geophys Res: Atmos 120(19):10285–10296. https://doi.org/10.1002/2015JD023697

    Article  Google Scholar 

  • Samset B, Myhre G, Schulz M, Balkanski Y, Bauer S, Berntsen T, Bian H, Bellouin N, Diehl T, Easter RC et al (2013) Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmos Chem Phys 13(5):2423

    Article  Google Scholar 

  • Sic B, El Amraoui L, Marécal V, Josse B, Arteta J, Guth J, Joly M, Hamer P (2015) Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations. Geosci Model Dev 8(2):381–408

    Article  Google Scholar 

  • Smith DM, Booth BB, Dunstone NJ, Eade R, Hermanson L, Jones GS, Scaife AA, Sheen KL, Thompson V (2016) Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat Clim Change 6(10):936–940

    Article  Google Scholar 

  • Stephens GL, Li J, Wild M, Clayson CA, Loeb N, Kato S, L’ecuyer T, Stackhouse Jr PW, Lebsock M, Andrews T, (2012) An update on Earth’s energy balance in light of the latest global observations. Nature Geoscience 5(10):691

    Article  Google Scholar 

  • Stevens B, Fiedler S, Kinne S, Peters K, Rast S, Müsse J, Smith SJ, Mauritsen T (2017) MACv2-SP: a parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6. Geosci Model Dev 10(1):433

    Article  Google Scholar 

  • Stier P, Seinfeld J, Kinne S, Boucher O (2007) Aerosol absorption and radiative forcing. Atmos Chem Phys 7:5237–5261. https://doi.org/10.5194/acp-7-5237-2007

    Article  Google Scholar 

  • Storelvmo T, Lohmann U, Bennartz R (2009) What governs the spread in shortwave forcings in the transient IPCC AR4 models? Geophys Res Lett 36(1). https://doi.org/10.1029/2008GL036069

  • Tanré D, Kaufman Y, Herman M, Mattoo S (1997) Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J Geophys Res: Atmos 102(D14):16971–16988. https://doi.org/10.5194/acp-7-5237-2007

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soci 90(3):311–323

    Article  Google Scholar 

  • Turnock S, Spracklen D, Carslaw K, Mann G, Woodhouse M, Forster P, Haywood J, Johnson C, Dalvi M, Bellouin N, Sanchez-Lorenzo A (2015) Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009. Atmos Chem Phys 15(16):9477–9500

    Article  Google Scholar 

  • Valcke S (2013) The OASIS3 coupler: a European climate modelling community software. Geosci Model Dev 6(2):373–388

    Article  Google Scholar 

  • Voldoire A, Sanchez-Gomez E, y Mélia DS, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, et al (2013) The CNRM-CM5 1 global climate model: description and basic evaluation. Clim Dyn 40(9–10):2091–2121. https://doi.org/10.5194/acp-7-5237-2007

    Article  Google Scholar 

  • Vuolo MR, Schulz M, Balkanski Y, Takemura T (2014) A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models. Atmos Chem Phys 14(2):877–897. https://doi.org/10.5194/acp-14-877-2014

    Article  Google Scholar 

  • Wang Y, Jiang JH, Su H (2015) Atmospheric responses to the redistribution of anthropogenic aerosols. J Geophys Res: Atmos 120(18):9625–9641

    Google Scholar 

  • Westervelt D, Horowitz L, Naik V, Golaz JC, Mauzerall D (2015) Radiative forcing and climate response to projected 21st century aerosol decreases. Atmos Chem Phys 15(22):12681–12703

    Article  Google Scholar 

  • Wild M (2009) Global dimming and brightening: a review. J Geophys Res: Atmos 114(D10). http://dx.doi.org/10.1029/2008JD011470

  • Wild M (2012) Enlightening global dimming and brightening. Bull Am Meteorol Soc 93(1):27–37

    Article  Google Scholar 

  • Wild M, Folini D, Hakuba MZ, Schär C, Seneviratne SI, Kato S, Rutan D, Ammann C, Wood EF, König-Langlo G (2015) The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Clim Dyn 44(11):3393–3429. https://doi.org/10.1007/s00382-014-2430-z

    Article  Google Scholar 

  • Williams K, Jones A, Roberts D, Senior C, Woodage M (2001) The response of the climate system to the indirect effects of anthropogenic sulfate aerosol. Clim Dyn 17(11):845–856

    Article  Google Scholar 

  • Zhang K, O’Donnell D, Kazil J, Stier P, Kinne S, Lohmann U, Ferrachat S, Croft B, Quaas J, Wan H, Rast S, Feichter J (2012) The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations. Atmos Chem Phys 12(19):8911–8949. https://doi.org/10.5194/acp-12-8911-2012

    Article  Google Scholar 

  • Zhang S, Wang M, Ghan SJ, Ding A, Wang H, Zhang K, Neubauer D, Lohmann U, Ferrachat S, Takeamura T et al (2016) On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models. Atmos Chem Phys 16(5):2765–2783

    Article  Google Scholar 

  • Zubler E, Folini D, Lohmann U, Lüthi D, Muhlbauer A, Pousse-Nottelmann S, Schär C, Wild M (2011) Implementation and evaluation of aerosol and cloud microphysics in a regional climate model. Journal of Geophysical Research: Atmospheres 116(D2). https://doi.org/10.1029/2010JD014572

Download references

Acknowledgements

The authors would like to thank the entire CNRM-CM team for their support, including A. Voldoire, R. Séférian and M. Chevallier for their help analysing ocean data, S. Sénési and S. Tyteca for their technical assistance and H. Douville for reviewing this manuscript. We are also grateful to J. Guth, J. Arteta and B. Josse for their assistance in preparing the MOCAGE simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Watson.

Additional information

This work was funded by the French National Research Agency (ANR) under the project MORDICUS, Grant agreement no. ANR-13-SENV-0002-02.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watson, L., Michou, M., Nabat, P. et al. Assessment of CNRM coupled ocean-atmosphere model sensitivity to the representation of aerosols. Clim Dyn 51, 2877–2895 (2018). https://doi.org/10.1007/s00382-017-4054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-4054-6

Keywords

Navigation