Advertisement

Diversity of moderate El Niño events evolution: role of air–sea interactions in the eastern tropical Pacific

  • Boris Dewitte
  • Ken Takahashi
Article

Abstract

In this paper we investigate the evolution of moderate El Niño events during their developing phase with the objective to understand why some of them did not evolve as extreme events despite favourable conditions for the non-linear amplification of the Bjerknes feedback (i.e. warm SST in Austral winter in the eastern equatorial Pacific). Among the moderate events, two classes are considered consisting in the Eastern Pacific (EP) El Niño events and Central Pacific (CP) events. We first show that the observed SST variability across moderate El Niño events (i.e. inter-event variability) is largest in the far eastern Pacific (east of ~ 130°W) in the Austral winter prior to their peak, which is associated to either significant warm anomaly (moderate EP El Niño) or an anomaly between weak warm and cold (moderate CP El Niño) as reveals by the EOF analysis of the SST anomaly evolution during the development phase of El Niño across the El Niño years. Singular value decomposition (SVD) analysis of SST and wind stress anomalies across the El Niño years further indicates that the inter-event SST variability is associated with an air–sea mode explaining 31% of the covariance between SST and wind stress. The associated SST pattern consists in SST anomalies developing along the coast of Ecuador in Austral fall and expanding westward as far as 130°W in Austral winter. The associated wind stress pattern features westerlies (easterlies) west of ~ 130°W along the equator peaking around June–August for EP (CP) El Niño events. This air–sea mode is interpreted as resulting from a developing seasonal Bjerknes feedback for EP El Niño events since it is shown to be associated to a Kelvin wave response at its peak phase. However equatorial easterlies east of 130°W emerge in September that counters the growing SST anomalies associated to the air–sea mode. These have been particularly active during both the 1972 and the 2015 El Niño events. It is shown that the easterlies are connected to an off-equatorial southerly wind off the coast of Peru and Ecuador. The southerly wind is a response to the coastal SST anomalies off Peru developing from Austral fall. Implications of our results for the understanding of the seasonal ENSO dynamics and diversity are discussed in the light of the analysis of two global climate models simulating realistically ENSO diversity (GFDL_CM2.1 and CESM).

Notes

Acknowledgements

B. Dewitte acknowledges supports from FONDECYT (projects 1171861 and 1151185) and from LEFE-GMMC (project STEPPE). K. Takahashi acknowledges supports from the PP 068 program. This work was granted access to the HPC resources of CALMIP supercomputing center, under the allocation 2016-1044 and 2017– 1044. We thank the two anonymous reviewers for their constructive comments that help improving the original manuscript.

References

  1. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007CrossRefGoogle Scholar
  2. Astudillo O, Dewitte B, Mallet M, Frappart F, Ruttlant J, Ramos M, Bravo L, Goubanova K, Illig S (2017) Surface winds off Peru–Chile: observing closer to the coast from radar altimetry. J Remote Sens Environ 191:179–196CrossRefGoogle Scholar
  3. Battisti DS, Sarachik ES, Hirst AC (1999) A consistent model for the large-scale steady surface atmospheric circulation in the tropics. J Clim 12:2956–2964CrossRefGoogle Scholar
  4. Bellucci A, Gualdi S, Navarra A (2010) The double-ITCZ syndrome in coupled general circulation models: the role of large-scale vertical circulation regimes. J Clim 23(5):1127–1145CrossRefGoogle Scholar
  5. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172CrossRefGoogle Scholar
  6. Björnsson H, Venegas SA, 1997: Amanual for EOF and SVD analyses of climatic data. CCGCR Report No. 97–1, McGill University, Montréal, QuébecGoogle Scholar
  7. Boucharel J, Timmermann A, Jin F-F (2013) Zonal phase propagation of ENSO sea surface temperature anomalies: revisited. Geophys Res Lett 40:4048–4053.  https://doi.org/10.1002/grl.50685CrossRefGoogle Scholar
  8. Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560CrossRefGoogle Scholar
  9. Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden MJ, Wu L, England MH, Wang G, Guilyardi E, Jin F-F (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4:111–116.  https://doi.org/10.1038/NCLIMATE2100CrossRefGoogle Scholar
  10. Cai W, Santoso A, Wang G, Yeh S-W, An S-I, Cobb K, Collins M, Guilyardi E, Jin F-F, Kug J-S, Lengaigne M, McPhaden MJ, Takahashi K, Timmermann A, Vecchi G, Watanabe M, Wu L (2015) ENSO and greenhouse warming. Nat Clim Change 5:849–859.  https://doi.org/10.1038/NCLIMATE2743CrossRefGoogle Scholar
  11. Cane MA (1983) Oceanographic events during El Niño. Science 222(4629):1189–1195CrossRefGoogle Scholar
  12. Capotondi A, Sardeshmukh PD (2015) Optimal precursors of different types of ENSO events. Geophys Res Lett.  https://doi.org/10.1002/2015GL066171Google Scholar
  13. Capotondi A, Wittenberg A, Newman M, Di Lorenzo E, Yu J-Y, Braconnot P, Cole J, Dewitte B, Giese B, Guilyardi E, Jin F-F, Karnauskas K, Kirtman B, Lee T, Schneider N, Xue Y, Yeh S-W (2015) Understanding ENSO diversity. Bull Am Met Soc.  https://doi.org/10.1175/BAMS-D-13-00117.1Google Scholar
  14. Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017.  https://doi.org/10.1175/2007MWR1978.1CrossRefGoogle Scholar
  15. Carton JA, Chepurin G, Cao X (2000) A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J Phys Oceanogr 30:294–309CrossRefGoogle Scholar
  16. Chavez FP, Strutton PG, Friederich GE, Feely RA, Feldman GC, Foley DG, McPhaden MJ (1999) Biological and chemical response of the equatorial Pacific Ocean to the 1997–1998 El Niño. Science 286:2126–2131.  https://doi.org/10.1126/science.286.5447.2126CrossRefGoogle Scholar
  17. Chiang JC, H. DJ, Vimont (2004) Analagous meridional modes of atmosphere–ocean variability in the tropical Pacific and tropical Atlantic. J Clim 17(21):4143–4158CrossRefGoogle Scholar
  18. Choi K-Y, Vecchi GA, Wittenberg AT (2013) ENSO transition, duration and amplitude asymmetries: role of the nonlinear wind stress coupling in a conceptual model. J Clim.  https://doi.org/10.1175/JCLI-D-13-00045.1Google Scholar
  19. Colas F, McWilliams JC, Capet X, Kurian J (2012) Heat balance and eddies in the Peru–Chile current system. Clim Dyn 39:509–529CrossRefGoogle Scholar
  20. Dee DP et al (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137:553–597.  https://doi.org/10.1002/qj.828CrossRefGoogle Scholar
  21. Delworth TL et al (2006) GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J Clim 19:634–674Google Scholar
  22. Dewitte B, Purca S, Illig S, Renault L, Giese B (2008) Low frequency modulation of the intraseasonal equatorial Kelvin wave activity in the Pacific Ocean from SODA: 1958–2001. J Clim 21:6060–6069CrossRefGoogle Scholar
  23. Dewitte B, Illig S, Renault L, Goubanova K, Takahashi K, Gushchina D, Mosquera K, Purca S (2011) Modes of covariability between sea surface temperature and wind stress intraseasonal anomalies along the coast of Peru from satellite observations (2000–2008). J Geophys Res 116:C04028.  https://doi.org/10.1029/2010JC006495CrossRefGoogle Scholar
  24. Dewitte B, Vazquez-Cuervo J, Goubanova K, Illig S, Takahashi K, Cambon G, Purca S, Correa D, Gutierrez D, Sifeddine A, Ortlieb L (2012) Change in El Niño flavours over 1958–2008: implications for the long-term trend of the upwelling off Peru. Deep Sea Research II.  https://doi.org/10.1016/j.dsr2.2012.04.011Google Scholar
  25. Gill A (1980) Some simple solutions for heat-induced tropical circulation. Quart J Roy Meteor Soc 106:447–462CrossRefGoogle Scholar
  26. Glantz MH (2001) Currents of change: impacts of El Niño and La Niña on climate and society. Cambridge University Press, p 252Google Scholar
  27. Goubanova K, Echevin V, Dewitte B, Codron F, Takahashi K, Terray P, Vrac M (2011) Statistical downscaling of sea-surface wind over the Peru–Chile upwelling region: diagnosing the impact of climate change from the IPSL-CM4 model. Clim Dyn.  https://doi.org/10.1007/s00382-010-0824-0Google Scholar
  28. Graham FS, Brown JN, Langlais C, Marsland SJ, Wittenberg AT, Holbrook NJ (2014) Effectiveness of the Bjerknes stability index in representing ocean dynamics. Climate Dyn 43:2399–2414CrossRefGoogle Scholar
  29. Graham F, Brown J, Wittenberg AT et al (2016) Understanding the double peaked El Niño in coupled GCMs. Clim Dyn.  https://doi.org/10.1007/s00382-016-3189-1Google Scholar
  30. Guilyardi E (2006) El Niño-mean state–seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26:329–348CrossRefGoogle Scholar
  31. Gushchina D, Dewitte B (2012) Intraseasonal tropical atmospheric variability associated with the two flavors of El Niño. Monthly Wea Rev 140(11):3669–3681CrossRefGoogle Scholar
  32. Ham Y, Kug JS (2012) How well do current climate models simulate two types of El Nino? Clim Dyn 39(1–2):383–398CrossRefGoogle Scholar
  33. Harrison DE, Larkin NK (1998) El Niño-Southern Oscillation sea surface temperature and wind anomalies, 1946–1993. Rev Geophys 36:3, 353–399CrossRefGoogle Scholar
  34. Hayes S, McPhaden P, Wallace MJ J (1989) The influence of sea surface temperature on surface wind in the Eastern Equatorial Pacific: weekly to monthly variability. J Clim 2:1500–1506CrossRefGoogle Scholar
  35. Hong LC, Ho L, Jin FF (2014) A southern hemisphere booster of super El Niño. Geophys Res Lett.  https://doi.org/10.1002/2014GL059370Google Scholar
  36. Hu S, Fedorov AV (2016) An exceptional easterly wind burst stalling El Niño of 2014. PNAS.  https://doi.org/10.1073/pnas.1514182113Google Scholar
  37. Hu S, Fedorov AV, Lengaigne M, Guilyardi E (2014) The role of westerly wind bursts in diversity and predictability of El Niño events: an ocean energetics perspective. GRL 41:4654–4663CrossRefGoogle Scholar
  38. Jin F-F (1997) An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  39. Jin F-F, Kim ST, Bejarano L (2006) A coupled-stability index for ENSO. Geophy Res Lett 33:L23708.  https://doi.org/10.1029/2006GL027221CrossRefGoogle Scholar
  40. Karamperidou C, Di Nezio PN, Timmermann A, Jin F-F, Cobb KM (2015) The response of ENSO flavors to mid-Holocene climate: Implications for proxy interpretation. Paleoceanography 30(5):527–547CrossRefGoogle Scholar
  41. Kay JE et al (2015) The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96:1333–1349.  https://doi.org/10.1175/BAMS-D-13-00255.1CrossRefGoogle Scholar
  42. Kessler WS (2006) The circulation of the eastern tropical Pacific: a review. Prog Oceanogr 69:181–217CrossRefGoogle Scholar
  43. Kessler WS, Kleeman R (2000) Rectification of the Madden-Julian Oscillation into the ENSO cycle. J Clim 13:3560–3575CrossRefGoogle Scholar
  44. Koseki S, Watanabe M (2010) Atmospheric boundary layer response to mesoscale SST anomalies in the Kuroshio extension. J Clim 23:2492–2507.  https://doi.org/10.1175/2009JCLI2915.1CrossRefGoogle Scholar
  45. Kug J, Jin F, An S (2009) Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J Clim 22(6):1499–1515.  https://doi.org/10.1175/2008JCLI2624.1CrossRefGoogle Scholar
  46. L’Heureux M, Takahashi K, Watkins AB, Barnston AG, Becker EJ, Di Liberto TE, Gamble F, Gottschalck J, Halpert MS, Huang B, Mosquera-Vásquez K, Wittenberg AT (2016) Observing and predicting the 2015–16 El Niño. Bull Am Meteorol Soc (accepted)Google Scholar
  47. Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603.  https://doi.org/10.1029/2010GL044007Google Scholar
  48. Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low level winds and convergence in the tropics. J Atmos Sci 44:2418–2436CrossRefGoogle Scholar
  49. Marathe S, Ashok K, Swapna P, Sabin TP (2015) Revisiting El Niño Modokis. Clim Dyn 45(11–12):3527–3545CrossRefGoogle Scholar
  50. McPhaden MJ (2015) Playing hide and seek with El Niño. Nature Clim Change 5:791–795.  https://doi.org/10.1038/nclimate2775CrossRefGoogle Scholar
  51. Menkes CE, Lengaigne M, Vialard J, Puy M, Marchesiello P, Cravatte S, Cambon G (2014) About the role of Westerly Wind Events in the possible development of an El Nino in 2014. Geophys Res Lett 41(18):6476–6483CrossRefGoogle Scholar
  52. Neelin JD, Jin F-F (1993) Modes of interannual tropical ocean-atmosphere interaction—a unified view. Part II: Analytical results in the weak coupling limit. J Atmos Sci 50:3504–3522CrossRefGoogle Scholar
  53. O’Neill LW, Esbensen S, Thum N, Samelson RM, Chelton DB (2010) Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J Clim 23:559–581.  https://doi.org/10.1175/2009JCLI2662.1CrossRefGoogle Scholar
  54. Rasmusson E, Carpenter T (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384CrossRefGoogle Scholar
  55. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res.  https://doi.org/10.1029/2002JD002670Google Scholar
  56. Ren H-L, Jin F-F (2011) Niño indices for two types of ENSO. Geophys Res Lett 38:L04704.  https://doi.org/10.1029/2010GL046031CrossRefGoogle Scholar
  57. Richter I (2015) Climate model biases in the eastern tropical oceans: causes, impacts and ways forward. WIREs Clim Change.  https://doi.org/10.1002/wcc.338Google Scholar
  58. Sanabria J, Bourrel L, Dewitte B, Frappart F, Rau P, Olimpio S, Labat D (2017) Rainfall along the coast of Peru during Strong El Niño events. J Int Climatol.  https://doi.org/10.1002/joc.5292Google Scholar
  59. Santoso A, McGregor S, Jin F-F, Cai W, England MH, An S-I, McPhaden M, Guilyardi E (2013) Late-twentieth-century emergence of the El Nino propagation asymmetry and future projections. Nature 504:126–130CrossRefGoogle Scholar
  60. Smith RD, Dukowicz JK, Malone RC (1992) Parallel ocean general circulation modelling. Phys D 60:38–61CrossRefGoogle Scholar
  61. Stein K, Schneider N, Timmermann A, Jin F-F (2010) Seasonal synchronization of ENSO events in a linear stochastic model. J Clim.  https://doi.org/10.1175/2010JCLI3292.1Google Scholar
  62. Takahashi K, Dewitte B (2016) Strong and moderate nonlinear El Niño regimes. Clim Dyn.  https://doi.org/10.1007/s00382-015-2665-3
  63. Takahashi K, Martínez AG (2017) The very strong El Niño in 1925 in the far-eastern Pacific. Clim Dyn.  https://doi.org/10.1007/s00382-017-3702-1
  64. Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38:L10704.  https://doi.org/10.1029/2011GL047364CrossRefGoogle Scholar
  65. Takahashi K, Martínez R, Montecinos A, Dewitte B, Gutiérrez D, Rodriguez-Rubio E (2014) Regional applications of observations in the eastern Pacific: Western South America, Whitepaper for TPOS2020, 8aGoogle Scholar
  66. Takahashi K, Karamperidou C, Dewitte B (2017) A theoretical model of strong and moderate El Niño regimes. Clim Dyn (accepted upon minor revision)Google Scholar
  67. Timmermann A, Jin F-F, Abshagen J (2003) A nonlinear theory for El Niño bursting. J Atmos Sci 60:152–165CrossRefGoogle Scholar
  68. Toniazzo T (2010) Climate variability in the south-eastern tropical Pacific and its relation with ENSO: a GCM study. Clim Dyn 34:1093–1114.  https://doi.org/10.1007/s00382-009-0602-zCrossRefGoogle Scholar
  69. Trenberth K, Stepaniak D (2001) Indices of El Niño evolution. J Clim 14(8):1697–1701CrossRefGoogle Scholar
  70. Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  71. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441(7089):73–76.  https://doi.org/10.1038/nature04744CrossRefGoogle Scholar
  72. Wallace J, Mitchell T, Deser C (1989) The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: seasonal and interannual variability. J Clim 2:1492–1499CrossRefGoogle Scholar
  73. Wallace JM, Smith C, Bretherton CS (1992) Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J Clim 5:562–576CrossRefGoogle Scholar
  74. Wittenberg AT (2004) Extended wind stress analyses for ENSO. J Clim 17:2526–2540CrossRefGoogle Scholar
  75. Wittenberg A, Rosati TA, Lau N-C, Ploshay JJ (2006) GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J Clim 19:698–722CrossRefGoogle Scholar
  76. Xie S-P, Philander SGH (1994) A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46A:340–350CrossRefGoogle Scholar
  77. Yu J-Y, Kim ST (2013) Identifying the types of major El Niño events since 1870. Int J Climatol 33:2105–2112.  https://doi.org/10.1002/joc.3575CrossRefGoogle Scholar
  78. Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a Changing Climate. Nature 461:511–514.  https://doi.org/10.1038/nature08316CrossRefGoogle Scholar
  79. Zhang H, Clement A, Di Nezio P (2014) The South Pacific meridional mode: a mechanism for ENSO-like variability. J Clim 27(2):769–783.  https://doi.org/10.1175/JCLI-D-13-00082.1CrossRefGoogle Scholar
  80. Zebiak SE, Cane MA (1987) A model of El Niño-southern oscillation. Mon Wea Rev 115:2262–2278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Centro de Estudios Avanzado en Zonas Áridas (CEAZA)CoquimboChile
  2. 2.Departamento de Biología, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
  3. 3.Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI)CoquimboChile
  4. 4.Laboratoire d’Etudes en Géophysique et Océanographie SpatialesToulouseFrance
  5. 5.Instituto Geofísico del PerúLimaPeru

Personalised recommendations