Climate Dynamics

, Volume 51, Issue 7–8, pp 2485–2508 | Cite as

Mechanisms of interannual- to decadal-scale winter Labrador Sea ice variability

  • S. CloseEmail author
  • C. Herbaut
  • M.-N. Houssais
  • A.-C. Blaizot


The variability of the winter sea ice cover of the Labrador Sea region and its links to atmospheric and oceanic forcing are investigated using observational data, a coupled ocean–sea ice model and a fully-coupled model simulation drawn from the CMIP5 archive. A consistent series of mechanisms associated with high sea ice cover are found amongst the various data sets. The highest values of sea ice area occur when the northern Labrador Sea is ice covered. This region is found to be primarily thermodynamically forced, contrasting with the dominance of mechanical forcing along the eastern coast of Baffin Island and Labrador, and the growth of sea ice is associated with anomalously fresh local ocean surface conditions. Positive fresh water anomalies are found to propagate to the region from a source area off the southeast Greenland coast with a 1 month transit time. These anomalies are associated with sea ice melt, driven by the enhanced offshore transport of sea ice in the source region, and its subsequent westward transport in the Irminger Current system. By combining sea ice transport through the Denmark Strait in the preceding autumn with the Greenland Blocking Index and the Atlantic Multidecadal Oscillation Index, strong correlation with the Labrador Sea ice area of the following winter is obtained. This relationship represents a dependence on the availability of sea ice to be melted in the source region, the necessary atmospheric forcing to transport this offshore, and a further multidecadal-scale link with the large-scale sea surface temperature conditions.


Labrador Sea Sea ice Ice–ocean–atmosphere interaction 



We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We are grateful to the three anonymous reviewers for their helpful comments on the manuscript. The research leading to these results has received funding from the European Union 7th Framework Programme (FP7 2007-2013) under Grant agreement 308299, NACLIM Project.

Supplementary material

382_2017_4024_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1450 KB)


  1. Aagaard K, Carmack EC (1989) The role of sea ice and other fresh water in the Arctic circulation. J Geophys Res 94(C10):14485–14498 CrossRefGoogle Scholar
  2. Bakalian F, Hameed S, Pickart R (2007) Influence of the Icelandic Low latitude on the frequency of Greenland tip jet events: Implications for Irminger Sea convection. J Geophys Res. (c04020)
  3. Bamber JL, Layberry RL, Gogineni SP (2001) A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors. J Geophys Res Atmos 106(D24):33. (773–33,780)CrossRefGoogle Scholar
  4. Bamber J, van den Broeke M, Ettema J, Lenaerts J, Rignot E (2012) Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys Res Lett. (l19501) CrossRefGoogle Scholar
  5. Barnes EA (2013) Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys Res Lett 40(17):4734–4739. CrossRefGoogle Scholar
  6. Barnes EA, Dunn-Sigouin E, Masato G, Woollings T (2014) Exploring recent trends in northern hemisphere blocking. Geophys Res Lett 41(2):638–644. CrossRefGoogle Scholar
  7. Belkin IM (2004) Propagation of the “Great Salinity Anomaly” of the 1990s around the northern North Atlantic. Geophys Res Lett.,l08306
  8. Belkin IM, Levitus S, Antonov J, Malmberg SA (1998) “Great Salinity Anomalies” in the North Atlantic. Prog Oceanogr 41(1):1–68. Accessed 2015CrossRefGoogle Scholar
  9. Bitz CM, Holland MM, Hunke EC, Moritz RE (2005) Maintenance of the sea-ice edge. J Clim 18(15):2903–2921. CrossRefGoogle Scholar
  10. Boning CW, Behrens E, Biastoch A, Getzlaff K, Bamber JL (2016) Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic ocean. Nat Geosci 9(7):523–527. CrossRefGoogle Scholar
  11. Chelton DB (1983) Effects of sampling errors in statistical estimation. Deep Sea Res A 30(10):1083–1103. CrossRefGoogle Scholar
  12. Chen HW, Alley RB, Zhang F (2016) Interannual Arctic sea ice variability and associated winter weather patterns: a regional perspective for 1979–2014. J Geophys Res Atmos. Google Scholar
  13. Close S, Houssais MN, Herbaut C (2015) Regional dependence in the timing of onset of rapid decline in Arctic sea ice concentration. J Geophys Res 120(12):8077–8098. CrossRefGoogle Scholar
  14. Close S, Houssais MN, Herbaut C (2017) The Arctic winter sea ice quadrupole revisited. J Clim 30:3157–3167. CrossRefGoogle Scholar
  15. Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7(9):627–637. CrossRefGoogle Scholar
  16. Comiso JC (2000) Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. Version 2. (updated 2014)
  17. Davini P, Cagnazzo C (2014) On the misinterpretation of the North Atlantic Oscillation in CMIP5 models. Clim Dyn 43(5–6):1497–1511. CrossRefGoogle Scholar
  18. Davini P, Cagnazzo C, Gualdi S, Navarra A (2012a) Bidimensional diagnostics, variability, and trends of northern hemisphere blocking. J Clim 25(19):6496–6509. CrossRefGoogle Scholar
  19. Davini P, Cagnazzo C, Neale R, Tribbia J (2012b) Coupling between Greenland blocking and the North Atlantic Oscillation pattern. Geophys Res Lett. CrossRefGoogle Scholar
  20. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Källberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. QJR Meteorol Soc 137(656):553–597. CrossRefGoogle Scholar
  21. Deser C, Walsh JE, Timlin MS (2000) Arctic sea ice variability in the context of recent atmospheric circulation trends. J Clim 13(3):617–633. 013<0617:ASIVIT>2.0.CO;2
  22. Deser C, Holland M, Reverdin G, Timlin M (2002) Decadal variations in Labrador Sea ice cover and North Atlantic sea surface temperatures. J Geophys Res 107(C5):3–1–3–12.
  23. Doyle J, Shapiro M (1999) Flow response to large-scale topography: the Greenland tip jet. Tellus A 51(5), URL Accessed 2015CrossRefGoogle Scholar
  24. Dukhovskoy DS, Myers PG, Platov G, Timmermans ML, Curry B, Proshutinsky A, Bamber JL, Chassignet E, Hu X, Lee CM, Somavilla R (2016) Greenland freshwater pathways in the sub-Arctic Seas from model experiments with passive tracers. J Geophys Res Oceans 121(1):877–907. CrossRefGoogle Scholar
  25. Fang Z, Wallace JM (1994) Arctic sea ice variability on a timescale of weeks and its relation to atmospheric forcing. J Clim 7(12):1897–1914. 007<1897:ASIVOA>2.0.CO;2
  26. Fang ZF (2012) Statistical relationship between the northern hemisphere sea ice and atmospheric circulation during wintertime. Observation, Theory and Modelling of Atmospheric Variability, World Scientific, Singapore, pp 131–141. CrossRefGoogle Scholar
  27. Fenty I, Heimbach P (2013) Hydrographic preconditioning for seasonal sea ice anomalies in the Labrador Sea. J Phys Oceanogr 43(5):863–883. CrossRefGoogle Scholar
  28. Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102(C6):12609–12646. CrossRefGoogle Scholar
  29. Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res 118(12):6704–6716. CrossRefGoogle Scholar
  30. Goosse H, Selten F, Haarsma R, Opsteegh J (2002) A mechanism of decadal variability of the sea-ice volume in the Northern Hemisphere. Clim Dyn 19(1):61–83. CrossRefGoogle Scholar
  31. Häkkinen S (1993) An Arctic source for the great salinity anomaly: a simulation of the Arctic ice–ocean system for 1955–1975. J Geophys Res Oceans 98(C9):16397–16410. CrossRefGoogle Scholar
  32. Häkkinen S (2002) Freshening of the Labrador Sea surface waters in the 1990s: another great salinity anomaly? Geophys Res Lett 29(24):85–1–85–4 2232CrossRefGoogle Scholar
  33. Hanna E, Jones JM, Cappelen J, Mernild SH, Wood L, Steffen K, Huybrechts P (2013) The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. Int J Climatol 33(4):862–880. CrossRefGoogle Scholar
  34. Hanna E, Cropper TE, Hall RJ, Cappelen J (2016) Greenland Blocking Index 1851–2015: a regional climate change signal. Int J Climatol 36(15):4847–4861. CrossRefGoogle Scholar
  35. Herbaut C, Houssais MN, Close S, Blaizot AC (2015) Two wind-driven modes of winter sea ice variability in the Barents Sea. Deep Sea Res I 106:97–115. CrossRefGoogle Scholar
  36. Hodson D, Sutton R (2012) The impact of resolution on the adjustment and decadal variability of the atlantic meridional overturning circulation in a coupled climate model. Clim Dyn 39:3057. CrossRefGoogle Scholar
  37. Ikeda M, Symonds G, Yao T (1988) Simulated fluctuations in annual Labrador sea ice cover. Atmos Ocean 26(1):16–39. CrossRefGoogle Scholar
  38. Jackson LC, Peterson KA, Roberts CD, Wood RA (2016) Recent slowing of Atlantic overturning circulation as a recovery from earlier strengthening. Nat Geosci 9(7):518-522. CrossRefGoogle Scholar
  39. Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18(19):4013–4031. CrossRefGoogle Scholar
  40. Karcher M, Gerdes R, Kauker F, Köberle C, Yashayaev I (2005) Arctic Ocean change heralds North Atlantic freshening. Geophys Res Lett. (l21606)
  41. Kuhlbrodt T, Titz S, Feudel U, Rahmstorf S (2001) A simple model of seasonal open ocean convection. Part II: Labrador Sea stability and stochastic forcing. Ocean Dyn 52(1):36–49. CrossRefGoogle Scholar
  42. Kvamstø NG, Skeie P, Stephenson DB (2004) Impact of Labrador sea-ice extent on the North Atlantic oscillation. Int J Climatol 24(5):603–612. CrossRefGoogle Scholar
  43. Lozier MS (2012) Overturning in the North Atlantic. Annu Rev Mar Sci 4(1):291–315. (pMID: 22457977) CrossRefGoogle Scholar
  44. Luo H, Castelao RM, Rennermalm AK, Tedesco M, Bracco A, Yager PL, Mote TL (2016) Oceanic transport of surface meltwater from the southern Greenland ice sheet. Nat Geosci 9(7):528–532. CrossRefGoogle Scholar
  45. Madec G (2008) NEMO ocean engine. Note du pôle de modélisation 27. Institut Pierre Simon Laplace (IPSL), FranceGoogle Scholar
  46. Marsden RF, Mysak LA, Myers RA (1991) Evidence for stability enhancement of sea ice in the Greenland and Labrador Seas. J Geophys Res Oceans 96(C3):4783–4789. CrossRefGoogle Scholar
  47. Marshall J, Schott F (1999) Open-ocean convection: observations, theory, and models. Rev Geophys 37(1):1–64. CrossRefGoogle Scholar
  48. Marshall J, Dobson F, Moore K, Rhines P, Visbeck M, d’Asaro E, Bumke K, Chang S, Davis R, Fischer K, Garwood R, Guest P, Harcourt R, Herbaut C, Holt T, Lazier J, Legg S, McWilliams J, Pickart R, Prater M, Renfrew I, Schott F, Send U, Smethie W (1998) The Labrador Sea deep convection experiment. Bull Am Meteorol Soc 79(10):2033–2058.<2033:TLSDCE>2.0.CO;2
  49. Moore GWK (2003) Gale force winds over the Irminger Sea to the east of Cape Farewell, Greenland. Geophys Res Lett. (1894) CrossRefGoogle Scholar
  50. Moore GWK, Renfrew IA (2005) Tip jets and barrier winds: a QuikSCAT climatology of high wind speed events around Greenland. J Clim 18(18):3713–3725. CrossRefGoogle Scholar
  51. Moore GWK, Renfrew IA, Pickart RS (2013) Multidecadal mobility of the North Atlantic Oscillation. J Clim 26(8):2453–2466. CrossRefGoogle Scholar
  52. Moore GWK, Straneo F, Oltmanns M (2014) Trend and interannual variability in southeast Greenland Sea Ice: impacts on coastal Greenland climate variability. Geophys Res Lett 41(23):8619–8626. 2014GL062107CrossRefGoogle Scholar
  53. Moore GWK, Vage K, Pickart RS, Renfrew IA (2015) Decreasing intensity of open-ocean convection in the Greenland and Iceland seas. Nat Clim Change 5(9):877–882. CrossRefGoogle Scholar
  54. Mysak L, Manak D, Marsden R (1990) Sea-ice anomalies observed in the Greenland and Labrador seas during 1901–1984 and their relation to an interdecadal Arctic climate cycle. Clim Dyn 5(2):111–133. CrossRefGoogle Scholar
  55. Mysak L, Ingram R, Wang J, van der Baaren A (1996) The anomalous sea ice extent in Hudson Bay, Baffin Bay and the Labrador Sea during three simultaneous NAO and ENSO episodes. Atmos Ocean 34(2):313–343. CrossRefGoogle Scholar
  56. Mysak LA, Manak DK (1989) Arctic Sea-Ice extent and anomalies, 1953–1984. Atmos Ocean 27(2):376–405. CrossRefGoogle Scholar
  57. Oltmanns M, Straneo F, Moore GWK, Mernild SH (2014) Strong downslope wind events in Ammassalik, Southeast Greenland. J Clim 27(3):977–993. CrossRefGoogle Scholar
  58. Oltmanns M, Straneo F, Seo H, Moore GWK (2015) The role of wave dynamics and small-scale topography for downslope wind events in Southeast Greenland. J Atmos Sci 72(7):2786–2805. CrossRefGoogle Scholar
  59. Peterson I, Pettipas R, Rosing-Asvid A (2015) Trends and Variability in Sea Ice and Icebergs off the Canadian East Coast. Atmos Ocean 53(5):582–594. CrossRefGoogle Scholar
  60. Pickart RS, Spall MA (2007) Impact of Labrador Sea convection on the North Atlantic Meridional Overturning Circulation. J Phys Oceanogr 37(9):2207–2227. CrossRefGoogle Scholar
  61. Pickart RS, Torres DJ, Clarke RA (2002) Hydrography of the Labrador Sea during active convection. J Phys Oceanogr 32(2):428–457.<0428:HOTLSD>2.0.CO;2 CrossRefGoogle Scholar
  62. Pickart RS, Spall MA, Ribergaard MH, Moore GWK, Milliff RF (2003) Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature 424(6945):152–156. CrossRefGoogle Scholar
  63. Poli P, Hersbach H, Dee DP, Berrisford P, Simmons AJ, Vitart F, Laloyaux P, Tan DGH, Peubey C, Thépaut JN, Trémolet Y, Hólm EV, Bonavita M, Isaksen L, Fisher M (2016) ERA-20C: an atmospheric reanalysis of the twentieth century. J Clim 29(11):4083–4097. CrossRefGoogle Scholar
  64. Prinsenberg SJ, Peterson IK, Narayanan S, Umoh JU (1997) Interaction between atmosphere, ice cover, and ocean off Labrador and Newfoundland from 1962 to 1992. Can J Fish Aquat Sci 54(S1):30–39. CrossRefGoogle Scholar
  65. Rex DF (1950) Blocking action in the middle troposphere and its effect upon regional climate. Tellus 2(4):275–301. CrossRefGoogle Scholar
  66. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20(22):5473–5496. CrossRefGoogle Scholar
  67. Roberts CD, Garry FK, Jackson LC (2013) A multimodel study of sea surface temperature and subsurface density fingerprints of the Atlantic meridional overturning circulation. J Clim 26(22):9155–9174. CrossRefGoogle Scholar
  68. Robson J, Hodson D, Hawkins E, Sutton R (2014) Atlantic overturning in decline? Nat Geosci 7(1):2–3. CrossRefGoogle Scholar
  69. Rogers JC, van Loon H (1979) The seesaw in winter temperatures between Greenland and Northern Europe. Part II: some oceanic and atmospheric effects in middle and high latitudes. Mon Weather Rev 107(5):509–519.<0509:TSIWTB>2.0.CO;2,CrossRefGoogle Scholar
  70. Sakamoto TT, Komuro Y, Nishimura T, Ishii M, Tatebe H, Shiogama H, Hasegawa A, Toyoda T, Mori M, Suzuki T, Imada Y, Nozawa T, Takata K, Mochizuki T, Ogochi K, Emori S, Hasumi H, Kimoto M (2012) Miroc4h: a new high-resolution atmosphere–ocean coupled general circulation model. J Meteorol Soc Jpn Ser II 90(3):325–359. CrossRefGoogle Scholar
  71. Screen JA, Deser C, Simmonds I, Tomas R (2014) Atmospheric impacts of Arctic sea-ice loss, 1979–2009: separating forced change from atmospheric internal variability. Clim Dyn 43(1–2):333–344. CrossRefGoogle Scholar
  72. Seierstad IA, Bader J (2008) Impact of a projected future Arctic sea ice reduction on extratropical storminess and the NAO. Clim Dyn 33(7):937. CrossRefGoogle Scholar
  73. Slonosky VC, Mysak LA, Derome J (1997) Linking Arctic sea ice and atmospheric circulation anomalies on interannual and decadal timescales. Atmos Ocean 35(3):333–366. CrossRefGoogle Scholar
  74. Straneo F, Heimbach P (2013) North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature 504(7478):36–43. CrossRefGoogle Scholar
  75. Strong C, Magnusdottir G, Stern H (2009) Observed feedback between winter sea ice and the North Atlantic Oscillation. J Clim 22(22):6021–6032. CrossRefGoogle Scholar
  76. Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning streamfunctions for the global ocean. J Clim 16(19):3213–3226. 016<3213:DMOSFT>2.0.CO;2 CrossRefGoogle Scholar
  77. Taylor KE, Stouffer RJ, Meehl GA (2011) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. CrossRefGoogle Scholar
  78. Titchner HA, Rayner NA (2014) The met office hadley centre sea ice and sea surface temperature data set, version 2: 1. sea ice concentrations. J Geophys Res Atmos 119(6):2864–2889. 2013JD020316CrossRefGoogle Scholar
  79. Tschudi M, Fowler C, Maslanik J, Stewart JS, Meier W (2016) Polar pathfinder daily 25 km EASE-Grid sea ice motion vectors. Version 3. Tech. rep., National Snow and Ice Data Center, Boulder, Colorado USA.
  80. Våge K, Pickart RS, Moore GWK, Ribergaard MH (2008) Winter mixed layer development in the central Irminger Sea: the effect of strong, intermittent wind events. J Phys Oceanogr 38(3):541–565. CrossRefGoogle Scholar
  81. Våge K, Pickart RS, Thierry V, Reverdin G, Lee CM, Petrie B, Agnew TA, Wong A, Ribergaard MH (2009a) Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nat Geosci 2(1):67–72. CrossRefGoogle Scholar
  82. Våge K, Spengler T, Davies HC, Pickart RS (2009b) Multi-event analysis of the westerly Greenland tip jet based upon 45 winters in ERA-40. Q J R Meteorol Soc 135(645):1999–2011. CrossRefGoogle Scholar
  83. Visbeck M, Fischer J, Schott F (1995) Preconditioning the Greenland Sea for deep convection: Ice formation and ice drift. J Geophys Res 100(C9):18,489–18,502. CrossRefGoogle Scholar
  84. Walsh JE, Chapman WL (1990) Arctic contribution to upper-ocean variability in the North Atlantic. J Clim 3(12):1462–1473.<1462:ACTUOV>2.0.CO;2CrossRefGoogle Scholar
  85. Walsh JE, Johnson CM (1979) Interannual atmospheric variability and associated fluctuations in Arctic Sea ice extent. J Geophys Res 84(C11):6915–6928. CrossRefGoogle Scholar
  86. Wang J, Mysak LA, Ingram RG (1994) Interannual variability of sea-ice cover in Hudson Bay, Baffin Bay and the Labrador Sea. Atmos Ocean 32(2):421–447. CrossRefGoogle Scholar
  87. Woollings T, Hoskins B, Blackburn M, Berrisford P (2008) A new Rossby wave-breaking interpretation of the North Atlantic oscillation. J Atmos Sci 65(2):609–626. CrossRefGoogle Scholar
  88. Woollings T, Hannachi A, Hoskins B (2010) Variability of the North Atlantic eddy-driven jet stream. Q J R Meteorol Soc 136(649):856–868. CrossRefGoogle Scholar
  89. Yang Q, Dixon TH, Myers PG, Bonin J, Chambers D, van den Broeke MR (2016) Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nat Commun. CrossRefGoogle Scholar
  90. Yashayaev I, Loder JW (2016) Recurrent replenishment of Labrador Sea Water and associated decadal-scale variability. J Geophys Res Oceans. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Sorbonne Universités (UPMC, Univ Paris 06)-CNRS-IRD-MNHN, LOCEAN LaboratoryParisFrance

Personalised recommendations