Climate Dynamics

, Volume 51, Issue 5–6, pp 2321–2339 | Cite as

Teleconnection stationarity, variability and trends of the Southern Annular Mode (SAM) during the last millennium

  • Christoph DätwylerEmail author
  • Raphael Neukom
  • Nerilie J. Abram
  • Ailie J. E. Gallant
  • Martin Grosjean
  • Martín Jacques-Coper
  • David J. Karoly
  • Ricardo Villalba


The Southern Annular Mode (SAM) is the leading mode of atmospheric interannual variability in the Southern Hemisphere (SH) extra-tropics. Here, we assess the stationarity of SAM spatial correlations with instrumental and paleoclimate proxy data for the past millennium. The instrumental period shows that temporal non-stationarities in SAM teleconnections are not consistent across the SH land areas. This suggests that the influence of the SAM index is modulated by regional effects. However, within key-regions with good proxy data coverage (South America, Tasmania, New Zealand), teleconnections are mostly stationary over the instrumental period. Using different stationarity criteria for proxy record selection, we provide new austral summer and annual mean SAM index reconstructions over the last millennium. Our summer SAM reconstructions are very robust to changes in proxy record selection and the selection of the calibration period, particularly on the multi-decadal timescale. In contrast, the weaker performance and lower agreement in the annual mean SAM reconstructions point towards changing teleconnection patterns that may be particularly important outside the summer months. Our results clearly portend that the temporal stationarity of the proxy-climate relationships should be taken into account in the design of comprehensive regional and hemispherical climate reconstructions. The summer SAM reconstructions show no significant relationship to solar, greenhouse gas and volcanic forcing, with the exception of an extremely strong negative anomaly following the AD 1257 Samalas eruption. Furthermore, reconstructed pre-industrial summer SAM trends are very similar to trends obtained by model control simulations. We find that recent trends in the summer SAM lie outside the 5–95% range of pre-industrial natural variability.


Climate change Climate reconstruction Paleoclimate Southern Hemisphere Holocene 



This is a contribution to the Past Global Changes (PAGES) 2k Network. Researchers from the PAGES2k consortium are acknowledged for providing access to data and metadata information. We thank Michael N. Evans for discussions. This study was supported by the Swiss National Science Foundation (SNF) Ambizione grant PZ00P2_154802. DJK receives funding through the Australian Research Council Centre of Excellence for Climate System Science (CE110001028). MJC acknowledges CONICYT-Chile through grants PAI79160105 and FONDAP15110009. RN, MG, and CD designed the study; CD and RN led the writing and conducted the data analysis. All authors jointly discussed and contributed to the writing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

Our proxy data and reconstruction results are available at the NOAA paleoclimatology database ( The input proxy databases are available at (data labelled N14 in SM Table S4 and S5), (P17), (V12), and (S17).

Supplementary material

382_2017_4015_MOESM1_ESM.pdf (3.7 mb)
Supplementary material 1 (PDF 3806 KB)


  1. Abram NJ, Mulvaney R, Vimeux F, Phipps SJ, Turner J, England MH (2014) Evolution of the Southern Annular Mode during the past millennium. Nat Clim change 4:564–569. CrossRefGoogle Scholar
  2. Allan R, Ansell T (2006) A New Globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Clim 19:5816–5842. CrossRefGoogle Scholar
  3. Arblaster JM, Meehl GA (2006) Contributions of external forcings to Southern Annular Mode trends. J Clim 19:2896–2905. CrossRefGoogle Scholar
  4. Bindoff NL, Stott PA, AchutaRao KM, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov II, Overland J, Perlwitz J, Sebbari R, Zhang X (2014) Detection and attribution of climate change: from global to regional. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013—the physical science basis. Cambridge University Press, Cambridge, pp 867–952Google Scholar
  5. Bradley RS, Diaz HF, Kiladis GN, Eischeid JK (1987) ENSO signal in continental temperature and precipitation records. Nature 327:497–501. CrossRefGoogle Scholar
  6. Bromwich DH, Parish TR (1998) Meteorology of the Antarctic. In: Karoly DJ, Vincent DG (eds) Meteorology of the Southern Hemisphere. American Meteorological Society, Boston, pp 175–200CrossRefGoogle Scholar
  7. Brönnimann S, Jacques-Coper M, Rozanov E, Fischer AM, Morgenstern O, Zeng G, Akiyoshi H, Yamashita Y (2017) Tropical circulation and precipitation response to ozone depletion and recovery. Environ Res Lett 12:64011. CrossRefGoogle Scholar
  8. Bürger G, Cubasch U (2005) Are multiproxy climate reconstructions robust? Geophys. Res Lett. Google Scholar
  9. Cai W, Cowan T (2006) SAM and regional rainfall in IPCC AR4 models: can anthropogenic forcing account for southwest Western Australian winter rainfall reduction? Geophys. Res Lett. Google Scholar
  10. Christiansen B, Ljungqvist FC (2017) Challenges and perspectives for large-scale temperature reconstructions of the past two millennia. Rev Geophys 55:40–96. CrossRefGoogle Scholar
  11. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. QJR Meteorol Soc 137:1–28. CrossRefGoogle Scholar
  12. Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology: a review and comparison of two techniques. Int J Climatol 14:379–402. CrossRefGoogle Scholar
  13. Ding Q, Steig EJ, Battisti DS, Wallace JM (2012) Influence of the tropics on the Southern Annular Mode. J Clim 25:6330–6348. CrossRefGoogle Scholar
  14. Fogt RL, Perlwitz J, Monaghan AJ, Bromwich DH, Jones JM, Marshall GJ (2009) Historical SAM variability. Part II: twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 models. J Clim 22:5346–5365. CrossRefGoogle Scholar
  15. Fogt RL, Bromwich DH, Hines KM (2011) Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim Dyn 36:1555–1576. CrossRefGoogle Scholar
  16. Gallant AJE, Phipps SJ, Karoly DJ, Mullan AB, Lorrey AM (2013) Nonstationary Australasian teleconnections and implications for paleoclimate reconstructions. J Clim 26:8827–8849. CrossRefGoogle Scholar
  17. Gergis J, Gallant AJE, Braganza K, Karoly DJ, Allen K, Cullen L, D’Arrigo R, Goodwin I, Grierson P, McGregor S (2012) On the long-term context of the 1997–2009 ‘Big Dry’ in South-Eastern Australia: insights from a 206-year multi-proxy rainfall reconstruction. Clim Change 1:1. Google Scholar
  18. Gergis J, Neukom R, Gallant AJE, Karoly DJ (2016) Australasian temperature reconstructions spanning the last millennium. J Clim 29:5365–5392. CrossRefGoogle Scholar
  19. Gershunov A, Schneider N, Barnett T (2001) Low-frequency modulation of the ENSO–Indian Monsoon Rainfall Relationship: signal or noise? J Clim 14:2486–2492CrossRefGoogle Scholar
  20. Gillett NP, Fyfe JC (2013) Annular Mode changes in the CMIP5 simulations. Geophys Res Lett 40:1189–1193. CrossRefGoogle Scholar
  21. Gillett NP, Kell TD, Jones PD (2006) Regional climate impacts of the Southern Annular Mode. Geophys Res Lett. 33.
  22. Gillett NP, Fyfe JC, Parker DE (2013) Attribution of observed sea level pressure trends to greenhouse gas, aerosol, and ozone changes. Geophys Res Lett 40:2302–2306. CrossRefGoogle Scholar
  23. Gong D, Wang S (1999) Definition of Antarctic oscillation index. Geophys Res Lett 26:459–462. CrossRefGoogle Scholar
  24. Guillet S, Corona C, Stoffel M, Khodri M, Lavigne F, Ortega P, Eckert N, Sielenou PD, Daux V, Churakova OV, Davi N, Edouard J-L, Zhang Y, Luckman BH, Myglan VS, Guiot J, Beniston M, Masson-Delmotte V, Oppenheimer C (2017) Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records. Nat Geosci 10:123–128. CrossRefGoogle Scholar
  25. Gupta AS, England MH (2006) Coupled ocean–atmosphere–ice response to variations in the Southern Annular Mode. J Clim 19:4457–4486. CrossRefGoogle Scholar
  26. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642. CrossRefGoogle Scholar
  27. Haurwitz MW, Brier GW (1981) A critique of the superposed epoch analysis method: its application to solar–weather relations. Mon Wea Rev 109:2074–2079. 10.1175/1520-0493(1981)109<2074:ACOTSE>2.0.CO;2CrossRefGoogle Scholar
  28. Hegerl GC, Crowley TJ, Hyde WT, Frame DJ (2006) Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440:1029–1032. CrossRefGoogle Scholar
  29. Hendon HH, Thompson DWJ, Wheeler MC (2007) Australian rainfall and surface temperature variations associated with the Southern hemisphere Annular Mode. J Climate 20:2452–2467. CrossRefGoogle Scholar
  30. Ho M, Kiem AS, Verdon-Kidd DC (2012) The Southern Annular Mode: a comparison of indices. Hydrol Earth Syst Sci 16:967–982. CrossRefGoogle Scholar
  31. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  32. Jones PD, Briffa KR, Osborn TJ, Lough JM, van Ommen TD, Vinther BM, Luterbacher J, Wahl ER, Zwiers FW, Mann ME, Schmidt GA, Ammann CM, Buckley BM, Cobb KM, Esper J, Goosse H, Graham N, Jansen E, Kiefer T, Kull C, Kuttel M, Mosley-Thompson E, Overpeck JT, Riedwyl N, Schulz M, Tudhope AW, Villalba R, Wanner H, Wolff E, Xoplaki E (2009a) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. The Holocene 19:3–49. CrossRefGoogle Scholar
  33. Jones JM, Fogt RL, Widmann M, Marshall GJ, Jones PD, Visbeck M (2009b) Historical SAM Variability. Part I: century-length seasonal reconstructions*. J Clim 22:5319–5345. CrossRefGoogle Scholar
  34. Karoly DJ, Hope P, Jones PD (1996) Decadal variations of the Southern hemisphere circulation. Int J Climatol 16:723–738.<723:AID-JOC54>3.0.CO;2-6 CrossRefGoogle Scholar
  35. Karpechko AY, Gillett NP, Marshall GJ, Scaife AA (2008) Stratospheric influence on circulation changes in the Southern Hemisphere troposphere in coupled climate models. Geophys Res Lett. Google Scholar
  36. Kidson JW (1988) Interannual variations in the Southern hemisphere circulation. J Clim 1:1177–1198.<1177:IVITSH>2.0.CO;2 CrossRefGoogle Scholar
  37. Kravitz B, Robock A (2011) Climate effects of high-latitude volcanic eruptions: Role of the time of year. J Geophys Res 116:1657. Google Scholar
  38. Lefebvre W (2004) Influence of the Southern Annular Mode on the sea ice–ocean system. J Geophys Res. Google Scholar
  39. Liu J, Curry JA, Martinson DG (2004) Interpretation of recent Antarctic sea ice variability. Geophys Res Lett. 31.
  40. Lorenz DJ, Hartmann DL (2001) Eddy–Zonal Flow Feedback in the Southern Hemisphere. J Atmos Sci 58:3312–3327.<3312:EZFFIT>2.0.CO;2 CrossRefGoogle Scholar
  41. Manatsa D, Matarira C, Mushore TD, Mudavanhu C (2015) Southern Africa winter temperature shifts and their link to the Southern Annular Mode. Clim Dyn 45:2337–2350. CrossRefGoogle Scholar
  42. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257. CrossRefGoogle Scholar
  43. Marshall GJ (2003) Trends in the Southern Annular Mode from Observations and Reanalyses. J Clim 16:4134–4143.<4134:TITSAM>2.0.CO;2 CrossRefGoogle Scholar
  44. McGraw MC, Barnes EA, Deser C (2016) Reconciling the observed and modeled Southern Hemisphere circulation response to volcanic eruptions. Geophys Res Lett 43:7259–7266. CrossRefGoogle Scholar
  45. McLandress C, Jonsson AI, Plummer DA, Reader MC, Scinocca JF, Shepherd TG (2010) Separating the dynamical effects of climate change and ozone depletion. Part I: Southern hemisphere stratosphere. J Clim 23:5002–5020. CrossRefGoogle Scholar
  46. Meinshausen M, Vogel E, Nauels A, Lorbacher K, Meinshausen N, Etheridge DM, Fraser PJ, Montzka SA, Rayner PJ, Trudinger CM, Krummel PB, Beyerle U, Canadell JG, Daniel JS, Enting IG, Law RM, Lunder CR, O’Doherty S, Prinn RG, Reimann S, Rubino M, Velders GJM, Vollmer MK, Wang RHJ, Weiss R (2017) Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci Model Dev 10:2057–2116. CrossRefGoogle Scholar
  47. Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophys Res. Google Scholar
  48. Nash DJ, Pribyl K, Klein J, Neukom R, Endfield GH, Adamson GCD, Kniveton DR (2016) Seasonal rainfall variability in southeast Africa during the nineteenth century reconstructed from documentary sources. Clim change 134:605–619. CrossRefGoogle Scholar
  49. Neukom R, Luterbacher J, Villalba R, Küttel M, Frank D, Jones PD, Grosjean M, Esper J, Lopez L, Wanner H (2010) Multi-centennial summer and winter precipitation variability in southern South America. Geophys Res Lett. Google Scholar
  50. Neukom R, Luterbacher J, Villalba R, Küttel M, Frank D, Jones PD, Grosjean M, Wanner H, Aravena J-C, Black DE, Christie DA, D’Arrigo R, Lara A, Morales M, Soliz-Gamboa C, Srur A, Urrutia R, Gunten L von (2011) Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Clim Dyn 37:35–51. CrossRefGoogle Scholar
  51. Neukom R, Gergis J, Karoly DJ, Wanner H, Curran M, Elbert J, González-Rouco F, Linsley BK, Moy AD, Mundo I, Raible CC, Steig EJ, van Ommen T, Vance T, Villalba R, Zinke J, Frank D (2014) Inter-hemispheric temperature variability over the past millennium. Nat Clim change 4:362–367. CrossRefGoogle Scholar
  52. PAGES 2 k Consortium (2013) Continental-scale temperature variability during the past two millennia. Nature Geosci 6:339–346. CrossRefGoogle Scholar
  53. PAGES 2 k Consortium (2017) A global multiproxy database for temperature reconstructions of the common era. Sci Data 4:170088. CrossRefGoogle Scholar
  54. Palmer JG, Cook ER, Turney CSM, Allen K, Fenwick P, Cook BI, O’Donnell A, Lough JM, Grierson P, Baker P (2015) Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500–2012) modulated by the Interdecadal Pacific Oscillation. Environ Res Lett 10:124002. CrossRefGoogle Scholar
  55. Pauling A, Luterbacher J, Wanner H (2003) Evaluation of proxies for European and North Atlantic temperature field reconstructions. Geophys Res Lett 30:603. CrossRefGoogle Scholar
  56. Petris G, Petrone S (2011) State Space Models in R. J Stat Soft 41. Google Scholar
  57. Pittock AB (1984) On the reality, stability and usefulness of Southern Hemisphere teleconnections. Australian Meteorological Magazine 32Google Scholar
  58. Polvani LM, Waugh DW, Correa GJP, Son S-W (2010) Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern hemisphere. J Clim 24:795–812. CrossRefGoogle Scholar
  59. Reason CJC, Rouault M (2005) Links between the Antarctic Oscillation and winter rainfall over western South Africa. Geophys Res Lett. 32.
  60. Santer BD, Wigley TML, Boyle JS, Gaffen DJ, Hnilo JJ, Nychka D, Parker DE, Taylor KE (2000) Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J Geophys Res 105:7337–7356. CrossRefGoogle Scholar
  61. Sear CB, Kelly PM, Jones PD, Goodess CM (1987) Global surface-temperature responses to major volcanic eruptions. Nature 330:365–367. CrossRefGoogle Scholar
  62. Sexton DMH (2001) The effect of stratospheric ozone depletion on the phase of the Antarctic Oscillation. Geophys Res Lett 28:3697–3700. CrossRefGoogle Scholar
  63. Sigl M, McConnell JR, Toohey M, Plunkett G, Ludlow F, Winstrup M, Kipfstuhl S, Motizuki Y (2015a) The history of volcanic eruptions since Roman times. PAGES Mag 23:48–49. CrossRefGoogle Scholar
  64. Sigl M, Winstrup M, McConnell JR, Welten KC, Plunkett G, Ludlow F, Büntgen U, Caffee M, Chellman N, Dahl-Jensen D, Fischer H, Kipfstuhl S, Kostick C, Maselli OJ, Mekhaldi F, Mulvaney R, Muscheler R, Pasteris DR, Pilcher JR, Salzer M, Schüpbach S, Steffensen JP, Vinther BM, Woodruff TE (2015b) Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523:543–549. CrossRefGoogle Scholar
  65. Sigmond M, Reader MC, Fyfe JC, Gillett NP (2011) Drivers of past and future Southern Ocean change: stratospheric ozone versus greenhouse gas impacts. Geophys Res Lett 38:n/a-n/a. Google Scholar
  66. Silvestri GE, Vera CS (2003) Antarctic Oscillation signal on precipitation anomalies over southeastern South America. Geophys Res Lett. 30.
  67. Silvestri G, Vera C (2009) Nonstationary impacts of the Southern Annular Mode on Southern hemisphere climate. J Climate 22:6142–6148. CrossRefGoogle Scholar
  68. Sinclair MR, Renwick JA, Kidson JW (1997) Low-frequency variability of southern hemisphere sea level pressure and weather system activity. Mon Wea Rev 125:2531–2543.<2531:LFVOSH>2.0.CO;2 CrossRefGoogle Scholar
  69. Smerdon JE, Pollack HN (2016) Reconstructing Earth’s surface temperature over the past 2000 years: the science behind the headlines. WIREs Clim Change 7:746–771. CrossRefGoogle Scholar
  70. Son S-W, Gerber EP, Perlwitz J, Polvani LM, Gillett NP, Seo K-H, Eyring V, Shepherd TG, Waugh D, Akiyoshi H, Austin J, Baumgaertner A, Bekki S, Braesicke P, Brühl C, Butchart N, Chipperfield MP, Cugnet D, Dameris M, Dhomse S, Frith S, Garny H, Garcia R, Hardiman SC, Jöckel P, Lamarque JF, Mancini E, Marchand M, Michou M, Nakamura T, Morgenstern O, Pitari G, Plummer DA, Pyle J, Rozanov E, Scinocca JF, Shibata K, Smale D, Teyssèdre H, Tian W, Yamashita Y (2010) Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J Geophys Res. 115.
  71. Stenni B, Curran MAJ, Abram NJ, Orsi A, Goursaud S, Masson-Delmotte V, Neukom R, Goosse H, Divine D, van Ommen T, Steig EJ, Dixon DA, Thomas ER, Bertler NAN, Isaksson E, Ekaykin A, Frezzotti M, Werner M (2017) Antarctic climate variability at regional and continental scales over the last 2000 years. Clim Past 13:1609–1634.
  72. Sterl A, van Oldenborgh GJ, Hazeleger W, Burgers G (2007) On the robustness of ENSO teleconnections. Clim Dyn 29:469–485. CrossRefGoogle Scholar
  73. Swart NC, Fyfe JC (2012) Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys Res Lett. Google Scholar
  74. Taylor MH, Losch M, Wenzel M, Schröter J (2013) On the Sensitivity of field reconstruction and prediction using empirical orthogonal functions derived from gappy data. J Clim 26:9194–9205. CrossRefGoogle Scholar
  75. Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895–899. CrossRefGoogle Scholar
  76. Thompson DWJ, Wallace JM (2000) Annular Modes in the Extratropical Circulation. Part I:Month-to-Month Variability. J Clim 13:1000–1016.<1000:AMITEC>2.0.CO;2 CrossRefGoogle Scholar
  77. Thompson DWJ, Solomon S, Kushner PJ, England MH, Grise KM, Karoly DJ (2011) Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geosci 4:741–749. CrossRefGoogle Scholar
  78. Toohey M, Krüger K, Niemeier U, Timmreck C (2011) The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions. Atmos Chem Phys 11:12351–12367. CrossRefGoogle Scholar
  79. Tusell F (2011) Kalman Filtering in R. J Stat Soft 39. Google Scholar
  80. van Oldenborgh GJ (2005) Searching for decadal variations in ENSO precipitation teleconnections. Geophys Res Lett 32:1845. Google Scholar
  81. Vieira LEA, Solanki SK, Krivova NA, Usoskin I (2011) Evolution of the solar irradiance during the Holocene. A&A 531:A6. CrossRefGoogle Scholar
  82. Villalba R, Lara A, Masiokas MH, Urrutia R, Luckman BH, Marshall GJ, Mundo IA, Christie DA, Cook ER, Neukom R, Allen K, Fenwick P, Boninsegna JA, Srur AM, Morales MS, Araneo D, Palmer JG, Cuq E, Aravena JC, Holz A, LeQuesne C (2012) Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode. Nature Geosci 5:793–798. CrossRefGoogle Scholar
  83. von Storch H, Zorita E, Jones JM, Dimitriev Y, González-Rouco F, Tett SFB (2004) Reconstructing past climate from noisy data. Science 306:679–682. CrossRefGoogle Scholar
  84. Wahl ER, Ammann CM (2007) Robustness of the Mann, Bradley, Hughes reconstruction of Northern Hemisphere surface temperatures: Examination of criticisms based on the nature and processing of proxy climate evidence. Climatic change 85:33–69. CrossRefGoogle Scholar
  85. Wahl ER, Smerdon JE (2012) Comparative performance of paleoclimate field and index reconstructions derived from climate proxies and noise-only predictors. Geophys Res Lett. Google Scholar
  86. Wahl ER, Ritson DM, Ammann CM (2006) Comment on “Reconstructing past climate from noisy data”. Science 312:529. CrossRefGoogle Scholar
  87. Watterson IG (2000) Southern midlatitude zonal wind vacillation and its interaction with the ocean in GCM simulations. J Clim 13:562–578.<0562:SMZWVA>2.0.CO;2 CrossRefGoogle Scholar
  88. Werner JP, Tingley MP (2015) Technical note: probabilistically constraining proxy age?depth models within a Bayesian hierarchical reconstruction model. Clim Past 11:533–545. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Geography and Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  2. 2.Research School of Earth Sciences and ARC Centre of Excellence for Climate System ScienceAustralian National UniversityCanberraAustralia
  3. 3.School of Earth, Atmosphere and EnvironmentMonash UniversityVictoriaAustralia
  4. 4.Departamento de Geofísica and Center for Climate and Resilience ResearchUniversidad de ConcepciónConcepciónChile
  5. 5.School of Earth Sciences and ARC Centre of Excellence for Climate System ScienceUniversity of MelbourneMelbourneAustralia
  6. 6.Instituto Argentino de NivologíaGlaciología y Ciencias Ambientales (IANIGLA), CCT CONICETMendozaArgentina

Personalised recommendations